scholarly journals A long short-term memory neural network model for knee joint acceleration estimation using mechanomyography signals

2020 ◽  
Vol 17 (6) ◽  
pp. 172988142096870
Author(s):  
Chenlei Xie ◽  
Daqing Wang ◽  
Haifeng Wu ◽  
Lifu Gao

With the growth of the number of elderly and disabled with motor dysfunction, the demand for assisted exercise is increasing. Wearable power assistance robots are developed to provide athletic ability of limbs for the elderly or the disabled who have weakened limbs to better self-care ability. Existing wearable power-assisted robots generally use surface electromyography (sEMG) to obtain effective human motion intentions. Due to the characteristics of sEMG signals, it is limited in many applications. To solve the above problems, we design a long short-term memory (LSTM) neural network model based on human mechanomyography (MMG) signals to estimate the motion acceleration of knee joint. The acceleration can be further calculated by the torque required for movement control of the wearable power assistance robots for the lower limb. We detect MMG signals on the clothed thigh, extract features of the MMG signals, and then, use principal component analysis to reduce the features’ dimensions. Finally, the dimension-reduced features are inputted into the LSTM neural network model in time series for estimating the acceleration. The experimental results show that the average correlation coefficient ( R) is 94.48 ± 1.91% for the estimation of acceleration in the process of continuously performing under approximately π/4 rad/s. This approach can be applied in the practical applications of wearable field.

2018 ◽  
Author(s):  
Muktabh Mayank Srivastava

We propose a simple neural network model which can learn relation between sentences by passing their representations obtained from Long Short Term Memory(LSTM) through a Relation Network. The Relation Network module tries to extract similarity between multiple contextual representations obtained from LSTM. Our model is simple to implement, light in terms of parameters and works across multiple supervised sentence comparison tasks. We show good results for the model on two sentence comparison datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Ogasawara ◽  
Satoru Ikenoue ◽  
Hiroko Yamamoto ◽  
Motoshige Sato ◽  
Yoshifumi Kasuga ◽  
...  

AbstractCardiotocography records fetal heart rates and their temporal relationship to uterine contractions. To identify high risk fetuses, obstetricians inspect cardiotocograms (CTGs) by eye. Therefore, CTG traces are often interpreted differently among obstetricians, resulting in inappropriate interventions. However, few studies have focused on quantitative and nonbiased algorithms for CTG evaluation. In this study, we propose a newly constructed deep neural network model (CTG-net) to detect compromised fetal status. CTG-net consists of three convolutional layers that extract temporal patterns and interrelationships between fetal heart rate and uterine contraction signals. We aimed to classify the abnormal group (umbilical artery pH < 7.20 or Apgar score at 1 min < 7) and the normal group from CTG data. We evaluated the performance of the CTG-net with the F1 score and compared it with conventional algorithms, namely, support vector machine and k-means clustering, and another deep neural network model, long short-term memory. CTG-net showed the area under the receiver operating characteristic curve of 0.73 ± 0.04, which was significantly higher than that of long short-term memory. CTG-net, a quantitative and automated diagnostic aid system, enables early intervention for putatively abnormal fetuses, resulting in a reduction in the number of cases of hypoxic injury.


Sign in / Sign up

Export Citation Format

Share Document