The Association Between Microenvironmental Reactive Oxygen Species and Embryo Development in Assisted Reproduction Technology Cycles

2012 ◽  
Vol 19 (7) ◽  
pp. 725-732 ◽  
Author(s):  
Tsung-Hsien Lee ◽  
Maw-Sheng Lee ◽  
Chung-Hsien Liu ◽  
Hui-Mei Tsao ◽  
Chun-Chia Huang ◽  
...  
Reproduction ◽  
2014 ◽  
Vol 147 (6) ◽  
pp. 817-824 ◽  
Author(s):  
Mónica Marques ◽  
Ana Paula Sousa ◽  
Artur Paiva ◽  
Teresa Almeida-Santos ◽  
João Ramalho-Santos

We have applied the mitochondria-specific superoxide fluorescent probe MitoSOX Red (MitoSOX) to detect mitochondria-specific reactive oxygen species (mROS) production in human sperm samples using flow cytometry. We show that human ejaculates are heterogeneous in terms of mROS production, with three subpopulations clearly detectable, comprising sperm that produce increasing amounts of mROS (MitoSOX−, MitoSOX+, and MitoSOX++). The sperm subpopulation producing the lowest amount of mROS represented the most functional subset of male gametes within the ejaculate, as it was correlated with the highest amount of live and non-apoptotic sperm and increased both in samples with better semen parameters and in samples processed by both density-gradient centrifugation and swim-up, both known to select for higher quality sperm. Importantly, the MitoSOX− subpopulation was clearly more prevalent in samples that gave rise to pregnancies following assisted reproduction. Our work, therefore, not only describe discreet human sperm heterogeneity at the mROS level but also suggests that mROS may represent a strategy to both evaluate sperm samples and isolate the most functional gametes for assisted reproduction.Free Portuguese abstractA Portuguese translation of this abstract is freely available athttp://www.reproduction-online.org/content/147/6/817/suppl/DC1


Reproduction ◽  
2013 ◽  
Vol 145 (5) ◽  
pp. 471-478 ◽  
Author(s):  
S Morado ◽  
P Cetica ◽  
M Beconi ◽  
J G Thompson ◽  
G Dalvit

The knowledge concerning redox and reactive oxygen species (ROS)-mediated regulation of early embryo development is scarce and remains controversial. The aim of this work was to determine ROS production and redox state during early in vitro embryo development in sperm-mediated and parthenogenetic activation of bovine oocytes. Sperm-mediated oocyte activation was carried out in IVF-modified synthetic oviductal fluid (mSOF) with frozen–thawed semen. Parthenogenetic activation was performed in TALP plus ionomycin and then in IVF-mSOF with 6-dimethylaminopurine plus cytochalasin B. Embryos were cultured in IVF-mSOF. ROS and redox state were determined at each 2-h interval (7–24 h from activation) by 2′,7′-dichlorodihydrofluorescein diacetate and RedoxSensor Red CC-1 fluorochromes respectively. ROS levels and redox state differed between activated and non-activated oocytes (P<0.05 by ANOVA). In sperm-activated oocytes, an increase was observed between 15 and 19 h (P<0.05). Conversely, in parthenogenetically activated oocytes, we observed a decrease at 9 h (P<0.05). In sperm-activated oocytes, ROS fluctuated throughout the 24 h, presenting peaks around 7, 19, and 24 h (P<0.05), while in parthenogenetic activation, peaks were detected at 7, 11, and 17 h (P<0.05). In the present work, we found clear distinctive metabolic patterns between normal and parthenogenetic zygotes. Oxidative activity and ROS production are an integral part of bovine zygote behavior, and defining a temporal pattern of change may be linked with developmental competence.


2010 ◽  
Vol 22 (1) ◽  
pp. 295
Author(s):  
A. Ideta ◽  
K. Tsuchiya ◽  
Y. Nakamura ◽  
M. Urakawa ◽  
M. Murakami ◽  
...  

Reactive oxygen species (ROS) damage preimplantation embryos by increasing DNA fragmentation, leading to early embryonic death. Erythrocytes have been shown to protect other cells and tissues against ROS. In mice, erythrocytes were recently found to improve the early development of embryos by their antioxidant effect. The purpose of the present study was to examine the effect of erythrocytes on the in vitro development of bovine IVF embryos in medium supplemented with ROS. COCs were aspirated from ovaries collected from a local slaughterhouse and were cultured for 22 h in TCM-199 containing 5% fetal bovine serum. IVF was performed using an IVF100 (Research Institute for the Functional Peptides, Yamagata, Japan) according to the manufacturer’s instructions. In experiment 1, IVF embryos were cultured in CR1aa medium supplemented with an oxidizing agent, 0.5 mM hypoxanthine and 0.01 U mL-1 xanthine oxidase (HX/XOD), in the presence and absence of erythrocytes (5 × 104, 5× 105, 5×106, and 5 × 107 erythrocytes mL-1). In experiments 2 and 3, the development of embryos under the condition without ROS was assessed in the presence and absence of erythrocytes (5 × 106 erythrocytes mL-1) or erythrocyte hemolysate (hemoglobin concentration of 1.9 g L-1), respectively. At 7 days after in vitro culture, the development to the blastocyst stage of IVF embryos was examined using a stereomicroscope. Data were analyzed using Fisher’s PLSD test and Student’s t-test In experiment 1, the presence of HX/XOD significantly inhibited embryo development to the blastocyst stage in vitro (P < 0.05). The addition of erythrocytes to medium supplemented with HX/XOD markedly improved preimplantation development (Table 1). In experiments 2 and 3, supplementation of erythrocytes or erythrocyte hemolysate promoted the development of embryos to the blastocyst stage (experiment 2: erythrocyte 42.4 ± 3.1%, control 28.5 ± 5.7%, P < 0.1; experiment 3: erythrocyte hemolysate 39.1 ± 3.3%, control 30.2 ± 1.0%, P < 0.1). In conclusion, we suggest that the addition of erythrocytes to culture medium can counteract the negative effects of ROS on embryo development and blastocyst formation. Table 1.Effect of HX/XOD and erythrocyte supplementation on embryo development to blastocyst stage


2018 ◽  
Vol 30 (1) ◽  
pp. 177
Author(s):  
S.-G. Yang ◽  
H.-J. Park ◽  
J.-W. Kim ◽  
J.-M. Jung ◽  
H.-G. Jegal ◽  
...  

The production of reactive oxygen species (ROS) from mitochondria contributes to redox signalling, mitochondrial functions, and apoptosis. However, the specific effects of mitochondria target superoxide (O2 •–) on porcine embryo development remain unclear. The objective of present study was to examine the differences of mitochondrial functions and dynamics in 2 subpopulations of porcine zygotes (G1 and G2), and to investigate the effects of Mito-TEMPO on porcine embryo development. Porcine embryos were visually classified in 2 groups [Grade (G)1: over 90%, and G2: below 90%] according to the lipid distribution at the zygote stage. The blastocyst development rate was greater in G1 than in G2 embryos (G1: 26.5 ± 5.9% v. G2: 16.2 ± 7.9%; P < 0.05). To evaluate blastocyst quality, we performed a 4′,6-diamidino-2-phenylindole (DAPI)-TUNEL assay. The proportion of TUNEL-positive cells was higher (P < 0.05) in G2 than G1 embryos. We measured superoxide production by MitoSOX staining as mitochondrial superoxide specific fluorescence dye by iRiSTM Digital Cell Image System (Logos Biosystems Inc., Gyeonggi-do, South Korea). Red fluorescence intensity of superoxide in G2 embryos significantly increased (P < 0.05) compared with that in G1. We investigated changes in mitochondrial functions using a Mitotracker JC-1 mitochondrial membrane potential assay kit (Thermo Fisher Scientific, Waltham, MA, USA) and ATP determination kit, respectively. Mitochondria membrane potential and ATP production were lower (P < 0.05) in G2 embryos than in G1 embryos. To confirm the protein levels of mitochondria fission protein DRP1, we performed Western blot analysis (per 40 embryos). Phosphorylation DRP1-Ser616 was increased (P < 0.05) in G1 embryos at cleavage stage compared with that in zygote, but not significantly different in G2 embryos. Thus, G2 embryos showed low development rate until blastocyst via mitochondrial dysfunction, increase in fission protein expression and mitochondrial aggregation according to the elevation of mito-ROS. Subsequently, the effect of the adding superoxide scavenger Mito-TEMPO was investigated in G2 embryos. Blastocyst formation (G2+MitoTempo: 28.8 ± 4.0% v. G2: 19.1 ± 5.1%; P < 0.05) and mitochondrial aggregation were recovered by mito-ROS reduction mediated by Mito-TEMPO. Our observations demonstrated that regulation of superoxide in mitochondria is important in pre-implantation development of porcine embryos. This work was supported by grants from the Next-Generation BioGreen 21 Program (PJ01117604) and the Bio-industry Technology Development Program (316037-04-2-HD020) through the Rural Development Administration and the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document