scholarly journals Production and Antifungal Activity of Cordytropolone and (-)-Leptosphaerone A From the Fungus Polycephalomyces nipponicus

2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984412 ◽  
Author(s):  
Nilawan Surapong ◽  
Aphidech Sangdee ◽  
Kittipong Chainok ◽  
Stephen G Pyne ◽  
Prapairat Seephonkai

Cordytropolone (1) and (−)-leptosphaerone A (2) were isolated from the culture broth of the fungus Polycephalomyces nipponicus. The structures of these two compounds were elucidated by spectroscopic methods and from a comparison of the spectroscopic data with those reported previously. The structure of 1 was confirmed by X-ray crystallography for the first time while the leptosphaerone class (compound 2) was first isolated as its (+)-antipode from the fungus Polycephalomyces ( Cordyceps). The fermentation process was monitored weekly by High performance liquid chromatography analysis for 10 weeks. The predominant compound (1) was produced at ~0.65 mg/mg of dry extract at week 9. Compound 1 exhibited modest antipathogenic fungal activity against Collectrichum musae, Colletotrichum capsici, Colletotrichum gloeosporioides, Fusarium spp. TFPK301, F. spp. FOC1708, and Pestalotia spp. with percentage of mycelial growth inhibition values of 3.74 ± 0.70%, 12.86 ± 1.43%, 0.91 ± 0.56%, 5.46 ± 0.56%, 7.93 ± 0.61%, and 18.75 ± 5.24%, respectively, at 25 μg/mL.

2010 ◽  
Vol 5 (4) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Mahmoud Mosaddegh ◽  
Maryam Hamzeloo Moghadam ◽  
Saeedeh Ghafari ◽  
Farzaneh Naghibi ◽  
Seyed Nasser Ostad ◽  
...  

Inula oculus-christi L. (Compositae) extract was chromatographed and three sesquiterpene lactones ergolide, gaillardin and pulchellin C were isolated. The structures of these compounds were determined by analysis of their spectroscopic data, and their crystal structures were defined using X-ray crystallography; the isolation of ergolide and pulchellin C is reported for the first time from this species. These three compounds were evaluated for their in vitro cytotoxic activity against MDBK, MCF7 and WEHI164 cells; ergolide and gaillardin exhibited lower and significantly different IC50 values compared with pulchellin C ( p<0.001).


2017 ◽  
Vol 12 (7) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Saifullah Abubakar ◽  
Vikneswaran Murugaiyah ◽  
Chin-Hoe Teh ◽  
Kit-Lam Chan

The crystal structure and absolute configuration of koetjapic acid were unambiguously reassigned by X-ray crystallography with strong support from NMR spectroscopic data. The acid contained 9 quaternary carbon atoms existing as an orthorhombic crystal with a space group of P21 21 21 and unit cell parameters of a = 7.6641(2), b = 14.6844(4) and c = 23.9316(6). Ring A adopted a chair conformation, ring B has an envelope conformation, whilst ring C assumed a half-chair and D displayed a chair conformation. The absolute configurations at C1 ( R), C5 ( R), C7 ( S), C10 ( S), C13 ( R), C14 ( R), C17 ( S) and C18 ( S) were assigned for the first time. The X-ray crystal of koetjapic acid was therefore reassigned as 3,4-seco-olean-4(23),12-diene-3,30-dioic acid. A plausible biogenetic synthetic pathway for compound 1 is also proposed.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 9
Author(s):  
Ya-Ping Liu ◽  
Sheng-Tao Fang ◽  
Zhen-Zhen Shi ◽  
Bin-Gui Wang ◽  
Xiao-Nian Li ◽  
...  

Three new phenylhydrazones, penoxahydrazones A–C (compounds 1–3), and two new quinazolines, penoxazolones A (compound 4) and B (compound 5), with unique linkages were isolated from the fungus Penicillium oxalicum obtained from the deep sea cold seep. Their structures and relative configurations were assigned by analysis of 1D/2D NMR and mass spectroscopic data, and the absolute configurations of 1, 4, and 5 were established on the basis of X-ray crystallography or ECD calculations. Compound 1 represents the first natural phenylhydrazone-bearing steroid, while compounds 2 and 3 are rarely occurring phenylhydrazone tautomers. Compounds 4 and 5 are enantiomers that feature quinazoline and cinnamic acid units. Some isolates exhibited inhibition of several marine phytoplankton species and marine-derived bacteria.


2001 ◽  
Vol 79 (3) ◽  
pp. 263-271
Author(s):  
Paul K Baker ◽  
Michael GB Drew ◽  
Deborah S Evans

Reaction of [WI2(CO)3(NCMe)2] with two equivalents of 1-phenyl-1-propyne (MeC2Ph) in CH2Cl2, and in the absence of light, gave the bis(1-phenyl-1-propyne) complex [WI2(CO)(NCMe)(η2-MeC2Ph)2] (1) in 77% yield. Treatment of equimolar quantities of 1 and NCR (R = Et, i-Pr, t-Bu, Ph) in CH2Cl2 afforded the nitrile-exchanged products, [WI2(CO)(NCR)(η2-MeC2Ph)2] (2-5) (R = Et (2), i-Pr (3), t-Bu (4), Ph (5)). Complexes 1, 2, and 5 were structurally characterized by X-ray crystallography. All three structures have the same pseudo-octahedral geometry, with the equatorial sites being occupied by cis and parallel alkyne groups, which are trans to the cis-iodo groups. The trans carbon monoxide and acetonitrile ligands occupy the axial sites. In structures 1 and 2, the methyl and phenyl substituents of the 1-phenyl-1-propyne ligands are cis to each other, whereas for the bulkier NCPh complex (5), the methyl and phenyl groups are trans to one another. This is the first time that this arrangement has been observed in the solid state in bis(alkyne) complexes of this type.Key words: bis(1-phenyl-1-propyne), carbonyl, nitrile, diiodo, tungsten(II), crystal structures.


1988 ◽  
Vol 41 (4) ◽  
pp. 429 ◽  
Author(s):  
LW Smith ◽  
JA Edgar ◽  
RI Willing ◽  
RW Gable ◽  
MF Mackay ◽  
...  

An alkaloid of Crotalaria leschenaultii DC., previously reported as crispatine and now named crotaleschenine, has been re-investigated and shown to be (7β,8α-H,12α,13α,14α)-12β-hydroxy-1,2-didehydrocrotalane-11,15-dione.1 Spectroscopic data are presented and the stereochemistry determined by X-ray crystallography. The esterifying acid of crotaleschenine is identical with that of retusine , which is thereby determined as (1a,7β,8α-H,12α,13α,14α)-12β- hydroxycrotalane-11,15-dione.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat7259 ◽  
Author(s):  
Nan Yan ◽  
Nan Xia ◽  
Lingwen Liao ◽  
Min Zhu ◽  
Fengming Jin ◽  
...  

The transition from nanocluster to nanocrystal is a central issue in nanoscience. The atomic structure determination of metal nanoparticles in the transition size range is challenging and particularly important in understanding the quantum size effect at the atomic level. On the basis of the rationale that the intra- and interparticle weak interactions play critical roles in growing high-quality single crystals of metal nanoparticles, we have reproducibly obtained ideal crystals of Au144(SR)60 and successfully solved its structure by x-ray crystallography (XRC); this structure was theoretically predicted a decade ago and has long been pursued experimentally but without success until now. Here, XRC reveals an interesting Au12 hollow icosahedron in thiolated gold nanoclusters for the first time. The Au–Au bond length, close to that of bulk gold, shows better thermal extensibility than the other Au–Au bond lengths in Au144(SR)60, providing an atomic-level perspective because metal generally shows better thermal extensibility than nonmetal materials. Thus, our work not only reveals the mysterious, long experimentally pursued structure of a transition-sized nanoparticle but also has important implications for the growth of high-quality, single-crystal nanoparticles, as well as for the understanding of the thermal extensibility of metals from the perspective of chemical bonding.


2014 ◽  
Vol 10 ◽  
pp. 2677-2682 ◽  
Author(s):  
Zhi Kai Guo ◽  
Rong Wang ◽  
Wei Huang ◽  
Xiao Nian Li ◽  
Rong Jiang ◽  
...  

An unusual C18 norditerpenoid, aspergiloid I (1), was isolated from the culture broth of Aspergillus sp. YXf3, an endophytic fungus derived from Ginkgo biloba. Its structure was unambiguously established by analysis of HRMS–ESI and spectroscopic data, and the absolute configuration was determined by low-temperature (100 K) single crystal X-ray diffraction with Cu Kα radiation. This compound is structurally characterized by a new carbon skeleton with an unprecedented 6/5/6 tricyclic ring system bearing an α,β-unsaturated spirolactone moiety in ring B, and represents a new subclass of norditerpenoid, the skeleton of which is named aspergilane. The hypothetical biosynthetic pathway for 1 was also proposed. The cytotoxic, antimicrobial, anti-oxidant and enzyme inhibitory activities of 1 were evaluated.


2014 ◽  
Vol 50 (23) ◽  
pp. 3040-3043 ◽  
Author(s):  
Norio Shibata ◽  
Satoru Mori ◽  
Masamichi Hayashi ◽  
Masashi Umeda ◽  
Etsuko Tokunaga ◽  
...  

A phthalocyanine–subphthalocyanine heterodinuclear dimer has been disclosed for the first time with its unique flat-bowl-shaped structure revealed by X-ray crystallography.


1999 ◽  
Vol 52 (1) ◽  
pp. 51 ◽  
Author(s):  
Martin A. Bennett ◽  
Christopher J. Cobley ◽  
David C. R. Hockless ◽  
Thomas Klettke

Reaction of bis(cycloocta-1,5-diene)platinum(0) with the (alkynyl)phenylsilanes Ph3SiC2But, Ph2Si(C2But)2 and PhSi(C2But)3 gives, respectively, [Pt (Ph3SiC2But)2] (1b), [Pt {Ph2Si(C2But)}]2 (2b), and [Pt {PhSi(C2But)3}]2 (4b), which contain zerovalent platinum atoms coordinated by two alkyne units. Spectroscopic data indicate that (2b) and (4b) contain two PtC4 and two SiC4 tetrahedra joined at the corners. X-Ray crystallography shows that complex (4b) is isostructural and isomorphous with the known nickel analogue, two of the alkyne units being uncoordinated; the central eight-membered ring comprising two silicon, four alkyne carbon and two platinum atoms has an approximate chair conformation. In contrast, the monomer (1b) is isostructural but not isomorphous with the analogous nickel compound (1a); in the crystal there is evidence for a weak intramolecular phenyl-phenyl interaction.


1984 ◽  
Vol 39 (5) ◽  
pp. 668-674 ◽  
Author(s):  
Ernst Otto Fischer ◽  
Rudolf Reitmeier ◽  
Klaus Ackermann

The hexacarbonyl compounds of chromium, molybdenum and tungsten react with the highly nucleophilic agent Li NiPr2 and in a subsequent alkylation with (Et3O)BF4 to give the carbene complexes (CO)5M[C(N′Pr2)OEt] (1, 3, 4). In case of W(CO)6 and Mo(CO)6 the novel biscarbene complexes cis(CO)4M[C(NiPr2)OEt]2 (2, 5) are additionally obtained. Reaction conditions, properties and spectroscopic data of the new compounds are reported. The molecular structure of cis(CO)4W[C(NiPr2)OEt]2 (4) was determined by X-ray crystallography


Sign in / Sign up

Export Citation Format

Share Document