scholarly journals Recent Advance of Domino Michael Reaction in Natural Product Synthesis

2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110498
Author(s):  
Hisahiro Hagiwara

Recent advances in the total syntheses of cyclic natural products and related compounds from 2005 to 2021, which employ domino Michael reactions as key steps, have been reviewed, focusing mainly on the domino Michael reactions catalyzed by organocatalysts.

Synthesis ◽  
2021 ◽  
Author(s):  
Dávid Roman ◽  
Maria Sauer ◽  
Christine Beemelmanns

Here, we have summarized more than 30 representative natural product syntheses published in 2015 to 2020 that employ one or more Horner-Wadsworth-Emmons (HWE) reactions. We comprehensively describe the applied phosphonate reagents, HWE reaction conditions and key steps of the total synthetic approaches. Our comprehensive review will support future synthetic approaches and serve as guideline to find the best HWE conditions for the most complicated natural products known


2020 ◽  
Vol 7 (1) ◽  
pp. 136-154 ◽  
Author(s):  
Jinshan Li ◽  
Kai Gao ◽  
Ming Bian ◽  
Hanfeng Ding

Recent developments of strategies on the construction of cyclobutanes and their application in complex natural product synthesis are discussed.


Synlett ◽  
2020 ◽  
Vol 31 (05) ◽  
pp. 421-433 ◽  
Author(s):  
Ken-ichi Takao ◽  
Akihiro Ogura ◽  
Keisuke Yoshida ◽  
Siro Simizu

In this Account, we describe our studies on the total synthesis of several natural products using intramolecular Nozaki–Hiyama–Takai–Kishi (NHTK) reactions. In each synthesis, an NHTK reaction is used to efficiently construct a medium-sized ring. These examples demonstrate the utility of the intramolecular NHTK reaction in natural product synthesis.1 Introduction2 Total Synthesis of (+)-Pestalotiopsin A3 Total Synthesis of (+)-Cytosporolide A4 Total Synthesis of (+)-Vibsanin A5 Total Syntheses of (+)-Aquatolide and Related Humulanolides6 Conclusion


2017 ◽  
Vol 34 (10) ◽  
pp. 1185-1192 ◽  
Author(s):  
Yong Li ◽  
Xianglin Yin ◽  
Mingji Dai

Non-seco-acid-based catalytic macrolactonization strategies and methods and their applications in total syntheses of natural products are highlighted.


Synlett ◽  
2020 ◽  
Author(s):  
Bernhard Breit ◽  
Dino Berthold

Cylindrocyclophanes are a class of naturally occurring 22-membered macrocycles with a unique architecture and interesting physical, chemical, and biological properties. This comprehensive account summarizes progress in various synthetic approaches to these compounds during the last twenty years, thereby emphasizing the key steps for establishing the [7,7]-paracyclophane scaffold, as well as alternative approaches to the construction of its stereocenters. Many of these syntheses highlight the power of transition-metal catalysis for natural-product synthesis. Furthermore, the unraveling of the biosynthesis to these natural products in Cylindrospermum licheniforme is discussed.1 Introduction2 Biosynthesis3 Smith’s Synthesis of (–)-Cylindrocyclophanes A and F4 Hoye’s Synthesis of (–)-Cylindrocyclophane A5 Iwabuchi’s Syntheses of (–)-Cylindrocyclophane A and (+)-Cylindrocyclophane A6 Nicolaou’s Synthesis of (–)-Cylindrocyclophanes A and F7 Breit’s Synthesis of (–)-Cylindrocyclophane F8 Conclusion


Synthesis ◽  
2021 ◽  
Author(s):  
Thomas Magauer ◽  
Kevin Rafael Sokol

AbstractThe construction of oxepin and dihydrooxepin containing natural products represents a challenging task in total synthesis. In the last decades, a variety of synthetic methods have been reported for the installation of these structural motifs. Herein, we provide an overview of synthetic methods and strategies to construct these motifs in the context of natural product synthesis and highlight the key steps of each example.1 Introduction2 Oxepin Natural Products3 Dihydrooxepin Natural Products3 Brønsted or Lewis acid Catalyzed Cyclization3.2 Radical Cyclization3.3 Substitution and Addition Cyclization3.4 Sigmatropic Rearrangement3.5 Oxidative Methods3.6 Transition Metal Catalyzed Cyclization4 Summary


2014 ◽  
Vol 1 (5) ◽  
pp. 556-566 ◽  
Author(s):  
Dan Wang ◽  
Shuanhu Gao

This review will focus on selected applications of Sonogashira coupling and subsequent transformations as key steps in the total synthesis of natural products.


Synthesis ◽  
2017 ◽  
Vol 28 (19) ◽  
pp. 4383-4413 ◽  
Author(s):  
Ming Bian ◽  
Hanfeng Ding ◽  
Lekai Li

The electrocyclic reaction is one of the most powerful tools for the construction of complex polycyclic scaffolds in a highly stereocontrolled fashion. In this review, recent advances in its application in the total synthesis of representative natural products are discussed, with the aim of providing a complement to existing reviews.1 Introduction2 4π Electrocyclization2.1 Neutral 4π Electrocyclization2.2 Cationic 4π Electrocyclization3 6π Electrocyclization3.1 All-Carbon 6π Electrocyclization3.2 Oxa-6π Electrocyclization3.3 Aza-6π Electrocyclization3.4 Retro-6π Electrocyclization4 8π Electrocyclization5 Conclusion and Outlook


2021 ◽  
Author(s):  
Nengzhong Wang ◽  
Zugen Wu ◽  
Junjie Wang ◽  
Nisar Ullah ◽  
Yixin Lu

A comprehensive and updated summary of asymmetric organocatalytic annulation reactions is presented; in particular, the applications of these annulation strategies to natural products synthesis are highlighted.


Sign in / Sign up

Export Citation Format

Share Document