Controversies and Contemporary Management of Orbital Floor Fractures

2021 ◽  
pp. 194338752110264
Author(s):  
Shivam Patel ◽  
Tom Shokri ◽  
Kasra Ziai ◽  
Jessyka G. Lighthall

Substantial controversy exists regarding the timing of intervention and management of patients with orbital floor fractures. Recent advances in computer-aided technology, including the use of 3-dimensional printing, intraoperative navigational imaging, and the use of novel implants, have allowed for improvement in prospective management modalities. As such, this article aims to review the indications and timing of repair, surgical approaches, materials used for repair, and contemporary adjuncts to repair. Indications for orbital floor fracture repair remain controversial as many of these fractures heal without intervention or adverse sequelae. Intraoperative navigation and imaging, as well as endoscopic guidance, can improve visualization of defects mitigating implant positioning errors, thereby reducing the need for secondary corrective procedures. Patient-specific implants may be constructed to fit the individual patient’s anatomy using the preoperative CT dataset and mirroring the contralateral unaffected side and have been shown to improve pre-operative efficiency and minimize postoperative complications. With increased data, we can hope to form evidence-based indications for using particular biomaterials and the criteria for orbital defect characteristics, which may be best addressed by a specific surgical approach.

2019 ◽  
Vol 129 (5) ◽  
pp. 456-461
Author(s):  
Mark M. Mims ◽  
Eric W. Wang

Objective: Options for the management of orbital floor fractures continue to evolve offering both potential advantages as well as higher costs. To date, the effect of implant choice on the cost associated with the repair of orbital floor fractures has not been studied. Methods: A retrospective review at a tertiary care, level I trauma center examining all adult, uncomplicated orbital floor fractures that underwent open reduction and internal fixation from 2013 to 2016. Patients with concurrent operative facial fractures were excluded. The main outcomes were overall cost of care from injury to last follow-up and operating room-related costs. Costs were determined using computerized records of charges as well as the hospital Charge Description Master. Kruksal-Wallis rank sum tests were used to analyze for differences between groups. Results: Twenty-eight patients fulfilled the inclusion criteria. Eight different stock, non-patient specific, implants were used for repair. The cost of individual types of implants ranged from $70.25 to $7 718.00. Total cost of care per patient across all implant types averaged $35 585.57 (range $25 586.26 to $49 985.74, P = .34). Operation-related charges accounted for the vast majority (94.4%) of the total cost of care. One complication occurred requiring operative re-positioning of the implant with an additional $13 042.41 in charges. Conclusions: In the setting of uncomplicated orbital floor fractures, surgeons should select an implant that allows them to carry out the repair in a safe, timely fashion. Additional large-scale studies would help to further delineate cost differences.


2020 ◽  
Vol 9 (5) ◽  
pp. 1579 ◽  
Author(s):  
Guido R. Sigron ◽  
Nathalie Rüedi ◽  
Frédérique Chammartin ◽  
Simon Meyer ◽  
Bilal Msallem ◽  
...  

The aim of this study was to compare the efficacy of the intraoperative bending of titanium mesh with the efficacy of pre-contoured “hybrid” patient-specific titanium mesh for the surgical repair of isolated orbital floor fractures. In-house 3D-printed anatomical models were used as bending guides. The main outcome measures were preoperative and postoperative orbital volume and surgery time. We performed a retrospective cohort study including 22 patients who had undergone surgery between May 2016 and November 2018. The first twelve patients underwent conventional reconstruction with intraoperative free-hand bending of an orbital floor mesh plate. The subsequent ten patients received pre-contoured plates based on 3D-printed orbital models that were produced by mirroring the non-fractured orbit of the patient using a medical imaging software. We compared the preoperative and postoperative absolute volume difference (unfractured orbit, fractured orbit), the fracture area, the fracture collapse, and the effective surgery time between the two groups. In comparison to the intraoperative bending of titanium mesh, the application of preformed plates based on a 3D-printed orbital model resulted in a non-significant absolute volume difference in the intervention group (p = 0.276) and statistically significant volume difference in the conventional group (p = 0.002). Further, there was a significant reduction of the surgery time (57.3 ± 23.4 min versus 99.8 ± 28.9 min, p = 0.001). The results of this study suggest that the use of 3D-printed orbital models leads to a more accurate reconstruction and a time reduction during surgery.


2021 ◽  
Vol 10 (16) ◽  
pp. 3509
Author(s):  
Guido R. Sigron ◽  
Marina Barba ◽  
Frédérique Chammartin ◽  
Bilal Msallem ◽  
Britt-Isabelle Berg ◽  
...  

The present study aimed to analyze if a preformed “hybrid” patient-specific orbital mesh provides a more accurate reconstruction of the orbital floor and a better functional outcome than a standardized, intraoperatively adapted titanium implant. Thirty patients who had undergone surgical reconstruction for isolated, unilateral orbital floor fractures between May 2016 and November 2018 were included in this study. Of these patients, 13 were treated conventionally by intraoperative adjustment of a standardized titanium mesh based on assessing the fracture’s shape and extent. For the other 17 patients, an individual three-dimensional (3D) anatomical model of the orbit was fabricated with an in-house 3D-printer. This model was used as a template to create a so-called “hybrid” patient-specific titanium implant by preforming the titanium mesh before surgery. The functional and cosmetic outcome in terms of diplopia, enophthalmos, ocular motility, and sensory disturbance trended better when “hybrid” patient-specific titanium meshes were used but with statistically non-significant differences. The 3D-printed anatomical models mirroring the unaffected orbit did not delay the surgery’s timepoint. Nonetheless, it significantly reduced the surgery duration compared to the traditional method (58.9 (SD: 20.1) min versus 94.8 (SD: 33.0) min, p-value = 0.003). This study shows that using 3D-printed anatomical models as a supporting tool allows precise and less time-consuming orbital reconstructions with clinical benefits.


2015 ◽  
Vol 43 (1) ◽  
pp. 126-130 ◽  
Author(s):  
Thomas Gander ◽  
Harald Essig ◽  
Philipp Metzler ◽  
Daniel Lindhorst ◽  
Leander Dubois ◽  
...  

2020 ◽  
Vol 9 (5) ◽  
pp. 464-467
Author(s):  
Ernest Cavalcante Pouchain ◽  
Vanessa Anastacio Pimentel ◽  
Roque Soares Martins Neto ◽  
Francisco Wylliego de Holanda Maciel ◽  
Kelvin Saldanha Lopes ◽  
...  

Os traumas de face ocorrem por forças externas lesionando o corpo, podendo eles ser locais, gerais ou concomitantes. A etiologia do traumatismo orbitário é diversificada como: quedas, queimaduras e agressões, sendo considerada uma das principais causas de morte no mundo de acordo com Organização Mundial da Saúde (OMS). As fraturas faciais podem se dividir em fraturas dos terço superior, terço médio e terço inferior. As fraturas do tipo Blow-outmantêm as margens orbitais integra, envolvendo apenas parede orbital inferior e ou média. Diplopia e enoftalmia são complicações bem características de traumas orbitais. O objetivo do artigo é identificar as principais lesões ocasionadas por fraturas orbitárias e apontar o diagnóstico e tratamento das lesões. Trata-se de uma revisão de literatura do tipo descritiva, com os dados colhidos nas bases de dados PubMed, SciElo, Lilacs, Google Acadêmico, selecionando artigos entre o ano de 2008 – 2018, de língua inglesa, portuguesa e espanhola, disponíveis para download nas bases de dados citadas. Os exames de imagem como a Tomografia Computadorizada é de suma importância para o diagnóstico devido seu detalhamento. Alguns sinais clínicos são: diplopia, enoftalmia, hipoftalmia ou mobilidade muscular ocular prejudicada. O tratamento ainda varia muito entre os cirurgiões.Descritores: Diplopia; Fraturas Ósseas; Órbita; Traumatismo do Nervo Abducente; Nervo Óptico.ReferênciasRamos JC, Almeida MLD, Alencar YCG, de Sousa Filho LF, Figueiredo CHMC, Almeida MSC. Estudo epidemiológico do trauma bucomaxilofacial em um hospital de referência da Paraíba. Rev Col Bras Cir. 2018;45(6):e1978.Affonso PRA, Cavalcanti MA, Groisman S, Gandelman I. Etiologia de trauma e lesões faciais no atendimento pré – hospitalar no Rio de Janeiro. Rev UNINGÁ. 2010;23(1):23-34.Scolari N, Heitz C. Protocolo de tratamento em fraturas orbitárias. RFO UPF. 2012;17(3):365-69.Polligkeit J, Grimm M, Peters JP, Cetindis M, Krimmel M, Reinert S. Assessment of indications and clinical outcome for the endoscopy-assisted combined subciliary/transantral approach in treatment of complex orbital floor fractures. J Craniomaxillofac Surg. 2013;41(8):797-802.Mendonça JCG, Freitas GP, Lopes HB, Nascimento VS. Tratamento de fraturas complexas do terço médio da face: relato de caso. Rev Bras Cir Craniomaxilofac 2011;14(4):221-24.Jung H, Byun JY, Kim HJ, Min JH, Park GM, Kim HY, Kim YK, Cha J, Kim ST. Prognostic CT findings of diplopia after surgical repair of pure orbital blowout fracture. J Craniomaxillofac Surg. 2016;44(9):1479-84.Ellis E 3rd, Perez D. An algorithm for the treatment of isolated zygomatico-orbital fractures. J Oral Maxillofac Surg. 2014;72(10):1975-83.Nilsson J, Nysjö J, Carlsson AP, Thor A. Comparison analysis of orbital shape and volume in unilateral fractured orbits. J Craniomaxillofac Surg. 2018;46(3):381-87.  Yu DY, Chen CH, Tsay PK, Leow AM, Pan CH, Chen CT. Surgical Timing and Fracture Type on the Outcome of Diplopia After Orbital Fracture Repair. Ann Plast Surg. 2016;76 Suppl 1:S91-5.Morotomi T, Iuchi T, Hashimoto T, Sueyoshi Y, Nagasao T, Isogai N. Image analysis of the inferior rectus muscle in orbital floor fracture using cine mode magnetic resonance imaging. J Craniomaxillofac Surg. 2015;43(10):2066-70.He Y, Zhang Y, An JG. Correlation of types of orbital fracture and occurrence of enophthalmos. J Craniofac Surg. 2012;23(4):1050-53. Roth FS, Koshy JC, Goldberg JS, Soparkar CN. Pearls of orbital trauma management. Semin Plast Surg. 2010;24(4):398-410. Palmieri CF Jr, Ghali GE. Late correction of orbital deformities. Oral Maxillofac Surg Clin North Am. 2012;24(4):649-63. Tavares SSS, Tavares GR, Oka SC, Cavalcante JR, Paiva MAF. Fraturas orbitárias: revisão de literatura e relato de caso. Rev Cir Traumatol Buco-Maxilo-Fac. 2011;11(2):35-42.Long JA, Gutta R. Orbital, periorbital, and ocular reconstruction. Oral Maxillofac Surg Clin North Am. 2013;25(2):151-66.Wolff J, Sándor GK, Pyysalo M, Miettinen A, Koivumäki AV, Kainulainen VT. Late reconstruction of orbital and naso-orbital deformities. Oral Maxillofac Surg Clin North Am. 2013;25(4):683-95.  Dean A, Heredero S. Alamillos F.J, García-García B. Aplicación clínica de la planificación virtual y la navegación en el tratamiento de las fracturas del suelo de la órbita. Rev Esp Cir Oral Maxilofac. 2015; 37(4):220-28.Damasceno NAP, Damasceno EF. raumatic orbital fracture with intact ocular globe displacement into the maxillary sinus. Rev bras oftalmol. 2010;69(1):52-4.


2017 ◽  
Vol 21 (2) ◽  
pp. 179-185 ◽  
Author(s):  
Ronny Grunert ◽  
Maximilian Wagner ◽  
Christian Rotsch ◽  
Harald Essig ◽  
Susanna Posern ◽  
...  

Author(s):  
Ananthanarayanan Parameswaran ◽  
Madhulaxmi Marimuthu ◽  
Shreya Panwar ◽  
Beat Hammer

AbstractSurgery for orbital trauma is challenging. A good understanding of the orbit, its normal form, function, and the varying patterns of its disruption due to trauma is essential for its proper management. The aim of this chapter is to provide a comprehensive clinical overview of all facets of orbital trauma for the young surgeon. The chapter has been structured to include the basics of (i) anatomy, (ii) biomechanics of injury, (iii) classification and their clinical implications, (iv) surgical approaches and (v) management options available for individual types of fractures. Special features of this chapter include descriptions of clinical features exclusive to orbital trauma with a section for management of orbital emergencies. A detailed note is provided for the management of fractures of the orbital floor including guidelines for deep orbital dissection and elaboration of the principles of reconstruction. The role of computer assisted surgery, intra-operative navigation and patient specific implants has also been added to explain the recent advances in this field of surgery.


Sign in / Sign up

Export Citation Format

Share Document