actin capping
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 31)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Robin Mark Shaw ◽  
Rachel Baum ◽  
Joseph Alexander Palatinus ◽  
Miriam Waghalter ◽  
Daisuke Shimura ◽  
...  

Previously, we identified that GJA1-20k, an internally translated isoform of Connexin 43, mediates an actin-dependent protective form of mitochondrial fission (Shimura, Nuebel et al. 2021). We found that when GJA1-20k is present, bands of actin surround mitochondria at locations enriched with GJA1-20k, inducing mitochondrial fission which generates less oxygen free radicals, protecting hearts subjected to ischemia-reperfusion injury. Here, we report that GJA1-20k is a direct actin binding protein and thereby identify the mechanism by which GJA1-20k is able to recruit and stabilize actin filaments around the mitochondria. Surprisingly, GJA1-20k functions as a canonical actin capping protein, producing both truncated actin puncta and stabilized actin filaments. GJA1-20k contains an RPEL-like actin binding motif, and we confirm with both computational modeling and biochemistry, that this domain is crucial for actin capping. The actin capping functionality of GJA1-20k adds GJA1-20k to the family of proteins that regulate actin dynamics. As a stress responsive protein, GJA1-20k can help explain cytoskeletal dependent responses to cellular stress, from delivery of channels to affecting mitochondrial size and function.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dawei Wang ◽  
Zuodong Ye ◽  
Wenjie Wei ◽  
Jingting Yu ◽  
Lihong Huang ◽  
...  

Actin filaments (F-actin) have been implicated in various steps of endosomal trafficking, and the length of F-actin is controlled by actin capping proteins, such as CapZ, which is a stable heterodimeric protein complex consisting of a and β subunits. However, the role of these capping proteins in endosomal trafficking remains elusive. Here, we found that CapZ docks to endocytic vesicles via its C-terminal actin-binding motif. CapZ knockout significantly increases the F-actin density around immature early endosomes, and this impedes fusion between these vesicles, manifested by the accumulation of small endocytic vesicles in CapZ-knockout cells. CapZ also recruits several RAB5 effectors, such as Rabaptin-5, to RAB5-positive early endosomes via its N-terminal domain, and this further activates RAB5. Collectively, our results indicate that CapZ regulates endosomal trafficking by controlling actin density around early endosomes and recruiting RAB5 effectors.


2021 ◽  
Author(s):  
Shinjini Ray ◽  
Priti Agarwal ◽  
Ronen Zaidel-Bar

Actin dynamics play an important role in the morphogenesis of cells and tissues, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report the in vivo role of the actin capping protein CAP-1 in the C. elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, where it keeps the level of contractility in check. A 60% reduction in the level of CAP-1 leads to a 2-fold increase in F-actin and non-muscle myosin II and only a 30% increase in Arp2/3. CAP-1 depletion leads to severe structural defects in the syncytial germline and oocytes, which can be rescued by reducing myosin activity. Thus, we uncover a physiological role for actin capping protein in maintaining C. elegans fertility by regulating the level of actomyosin contractility.


2021 ◽  
pp. mbc.E21-01-0032
Author(s):  
Andrew K. Lamb ◽  
Andres N. Fernandez ◽  
Olve B. Peersen ◽  
Santiago M. Di Pietro

Clathrin- and actin-mediated endocytosis is a fundamental process in eukaryotic cells. Previously, we discovered Tda2 as a new yeast dynein light chain that works with Aim21 to regulate actin assembly during endocytosis. Here, we show Tda2 functions as a dimerization engine bringing two Aim21 molecules together using a novel binding surface different than the canonical dynein light chain ligand binding groove. Point mutations on either protein that diminish the Tda2-Aim21 interaction in vitro cause the same in vivo phenotype as TDA2 deletion showing reduced actin capping protein recruitment and increased filamentous actin at endocytic sites. Remarkably, chemically induced dimerization of Aim21 rescues the endocytic phenotype of TDA2 deletion. We also uncovered a capping protein interacting motif in Aim21, expanding its function to a fundamental cellular pathway and showing such motif exists outside mammalian cells. Furthermore, specific disruption of this motif causes the same deficit of actin capping protein recruitment and increased filamentous actin at endocytic sites as AIM21 deletion. Thus, the data indicates the Tda2-Aim21 complex functions in actin assembly primarily through capping protein regulation. Collectively, our results provide a mechanistic view of the Tda2-Aim21 complex and its function in actin network regulation at endocytic sites.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Cassidy Nieder ◽  
Peter Rovito ◽  
Alfonsina Ramon ◽  
Mollie Getzfread ◽  
Jocelyn Lippman‐Bell

2021 ◽  
Vol 11 ◽  
Author(s):  
Jin Li ◽  
Wei Zhang ◽  
Jian Gao ◽  
Min Du ◽  
Huimin Li ◽  
...  

The ubiquitin-proteasome system (UPS) is a regulated mechanism of intracellular protein degradation and turnover, and its dysfunction is associated with various diseases including cancer. UBR5, an E3 ubiquitin ligase, is emerging as an important regulator of the UPS in cancers, but its role in pancreatic cancer is poorly understood. Here, we show that UBR5 is significantly upregulated in pancreatic cancer tissues. High UBR5 expression is correlated with increased lymph node metastasis and poor survival of patients. The loss-of-function and gain-of-function studies demonstrated that UBR5 substantially enhanced the in vitro migratory and invasive ability of pancreatic cancer cells. UBR5 knockdown also markedly inhibited in vivo cancer metastasis in the liver metastatic model of pancreatic cancer in nude mice, suggesting UBR5 as a potent metastatic promoter in pancreatic cancer. Furthermore, using co-immunoprecipitation combined with mass spectrometry analyses, CAPZA1, a member of F-actin capping protein α subunit family, was identified as a novel substrate of UBR5. UBR5 overexpression could promote the degradation of CAPZA1 via the UPS and induce the accumulation of F-actin, which has been described as an essential molecular event during the process of CAPZA1 deficiency-induced cancer cells migration and invasion. UBR5 knockdown significantly increased the intracellular level of CAPZA1 and CAPZA1 downregulation largely reversed the UBR5 knockdown-induced suppression of cell migration and invasion in pancreatic cancer cells. Collectively, our findings unveil UBR5 as a novel and critical regulator of pancreatic cancer metastasis and highlight the potential for UBR5-CAPZA1 axis as a therapeutic target for preventing metastasis in pancreatic cancer patients, especially in those with increased UBR5 expression.


2021 ◽  
pp. 166891
Author(s):  
Shuichi Takeda ◽  
Ryotaro Koike ◽  
Ikuko Fujiwara ◽  
Akihiro Narita ◽  
Makoto Miyata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document