scholarly journals The Barrow Biomimetic Spine: Face, Content, and Construct Validity of a 3D-Printed Spine Model for Freehand and Minimally Invasive Pedicle Screw Insertion

2019 ◽  
Vol 9 (6) ◽  
pp. 635-641 ◽  
Author(s):  
Michael A. Bohl ◽  
Rohit Mauria ◽  
James J. Zhou ◽  
Michael A. Mooney ◽  
Joseph D. DiDomenico ◽  
...  

Study Design: Description and evaluation of a novel surgical training platform. Objectives: The purpose of this study was to investigate the face, content, and construct validity of 5 novel surgical training models that simulate freehand and percutaneous (minimally invasive surgery [MIS]) pedicle screw placement. Methods: Five spine models were developed by residents: 3 for freehand pedicle screw training (models A-C) and 2 for MIS pedicle screw training (models D and E). Attending spine surgeons evaluated each model and, using a 20-point Likert-type scale, answered survey questions on model face, content, and construct validity. Scores were statistically evaluated and compared using means, standard deviations, and analysis of variance between models and between surgeons. Results: Among the freehand models, model C demonstrated the highest overall validity, with mean face (15.67 ± 5.49), content (19.17 ± 0.59), and construct (18.83 ± 0.24) validity all measuring higher than the other freehand models. For the MIS models, model D had the highest validity scores (face, content, and construct validity of 11.67 ± 3.77, 18.17 ± 2.04, and 17.00 ± 3.46, respectively). The 3 freehand models differed significantly in content validity scores ( P = .002) as did the 2 MIS models ( P < .001). The testing surgeons’ overall validity scores were significantly different for models A ( P = .005) and E ( P < .001). Conclusions: A 3-dimensional-printed spine model with incorporated bone bleeding and silicone rubber soft tissue was scored as having very high content and construct validity for simulating freehand pedicle screw insertion. These data has informed the further development of several surgical training models that hold great potential as educational adjuncts in surgical training programs.

Medicine ◽  
2020 ◽  
Vol 99 (43) ◽  
pp. e21838
Author(s):  
Hao-Tian Xu ◽  
Shuang Zheng ◽  
Rong-Peng Dong ◽  
Tong Yu ◽  
Jian-Wu Zhao

2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


Sign in / Sign up

Export Citation Format

Share Document