scholarly journals Patient-Reported and Quantitative Outcomes of Anatomic Anterior Cruciate Ligament Reconstruction With Hamstring Tendon Autografts

2020 ◽  
Vol 8 (7) ◽  
pp. 232596712092615
Author(s):  
Theresa Diermeier ◽  
Sean J. Meredith ◽  
James J. Irrgang ◽  
Stefano Zaffagnini ◽  
Ryosuke Kuroda ◽  
...  

Background: The pivot-shift test has become more consistent and reliable and is a meaningful outcome measurement after anterior cruciate ligament reconstruction (ACLR). Purpose/Hypothesis: The purpose of this investigation was to assess patient-reported outcomes (PROs) and the quantitative pivot shift (QPS) preoperatively, at time zero immediately after anatomic ACLR, and after 24 months as well as the relationship between PROs and the QPS. It was hypothesized that anatomic ACLR would restore rotatory stability measured by the pivot-shift test and that QPS measurements would be positively correlated with PROs. Study Design: Cohort study; Level of evidence, 2. Methods: The ACL-injured and contralateral uninjured knees from 89 of 107 (83.2%) enrolled patients at 4 international centers were evaluated using a standardized pivot-shift test. Tibial acceleration was assessed with an inertial sensor, and lateral compartment translation was measured using an image analysis system preoperatively, at time zero immediately postoperatively, and at follow-up after 2 years. PROs were assessed at 12 and 24 months postoperatively with the International Knee Documentation Committee (IKDC) subjective knee form, Cincinnati Knee Rating System (CKRS), Marx activity rating scale, and activity of daily living score (ADLS). Results: The mean patient age at surgery was 27 years (range, 15-45 years). A positive pivot shift preoperatively (side-to-side difference in tibial acceleration, 2.6 ± 4.0 m/s2; side-to-side difference in anterior tibial translation, 2.0 ± 2.0 mm) was reduced at time zero postoperatively (side-to-side difference in tibial acceleration, –0.5 ± 1.3 m/s2; side-to-side difference in anterior tibial translation, –0.1 ± 1.0 mm). All PROs improved from preoperatively to final follow-up at 24 months: from 56.5 to 85.5 points for the IKDC ( P = .0001), from 28.8 to 32.4 points for the CKRS ( P = .04), from 11.2 to 7.9 points for the Marx ( P < .0001), and from 75.7 to 91.6 points for the ADLS ( P < .0001). Neither preoperative nor time zero postoperative rotatory laxity assessed by the pivot-shift test correlated with PROs at 24-month follow-up. A graft retear was observed in 4 patients (4.5%) within 2 years of follow-up. Conclusion: Anatomic ACLR resulted in significantly improved and acceptable PROs at 2-year follow-up and a low failure rate. Anatomic ACLR restored QPS measurements of anterior tibial translation and tibial acceleration to those of the contralateral knee immediately after surgery while still under anesthesia, but there was no correlation between the QPS preoperatively or at time zero after ACLR and PROs at 2-year follow-up.

2019 ◽  
Vol 47 (9) ◽  
pp. 2077-2085 ◽  
Author(s):  
Robert Magnussen ◽  
Emily K. Reinke ◽  
Laura J. Huston ◽  
Jack T. Andrish ◽  
Charles L. Cox ◽  
...  

Background: While a primary goal of anterior cruciate ligament (ACL) reconstruction is to reduce pathologically increased anterior and rotational knee laxity, the relationship between knee laxity after ACL reconstruction and patient-reported knee function remains unclear. Hypothesis: There would be no significant correlation between the degree of residual anterior and rotational knee laxity and patient-reported outcomes (PROs) 2 years after primary ACL reconstruction. Study Design: Cross-sectional study; Level of evidence, 3. Methods: From a prospective multicenter nested cohort of patients, 433 patients younger than 36 years of age injured in sports with no history of concomitant ligament surgery, revision ACL surgery, or surgery of the contralateral knee were identified and evaluated at a minimum 2 years after primary ACL reconstruction. Each patient underwent Lachman and pivot-shift evaluation as well as a KT-1000 arthrometer assessment along with Knee injury and Osteoarthritis Outcome Score and subjective International Knee Documentation Committee (IKDC) scores. A proportional odds logistic regression model was used to predict each 2-year PRO score, controlling for preoperative score, age, sex, body mass index, smoking, Marx activity score, education, subsequent surgery, meniscal and cartilage status, graft type, and range of motion asymmetry. Measures of knee laxity were independently added to each model to determine correlation with PROs. Results: Side-to-side manual Lachman differences were IKDC A in 246 (57%) patients, IKDC B in 183 (42%) patients, and IKDC C in 4 (<1%) patients. Pivot-shift was classified as IKDC A in 209 (48%) patients, IKDC B in 183 (42%) patients, and IKDC C in 11 (2.5%) patients. The mean side-to-side KT-1000 difference was 2.0 ± 2.6 mm. No significant correlations were noted between pivot-shift or anterior tibial translation as assessed by Lachman or KT-1000 and any PRO. All predicted differences in PROs based on IKDC A versus B pivot-shift and anterior tibial translation were less than 4 points. Conclusion: Neither the presence of IKDC A versus B pivot-shift nor increased anterior tibial translation of up to 6 mm is associated with clinically relevant decreases in PROs 2 years after ACL reconstruction.


2018 ◽  
Vol 46 (10) ◽  
pp. 2422-2431 ◽  
Author(s):  
Nicholas N. DePhillipo ◽  
Gilbert Moatshe ◽  
Alex Brady ◽  
Jorge Chahla ◽  
Zachary S. Aman ◽  
...  

Background: Ramp lesions were initially defined as a tear of the peripheral attachment of the posterior horn of the medial meniscus at the meniscocapsular junction. The separate biomechanical roles of the meniscocapsular and meniscotibial attachments of the posterior medial meniscus have not been fully delineated. Purpose: To evaluate the biomechanical effects of meniscocapsular and meniscotibial lesions of the posterior medial meniscus in anterior cruciate ligament (ACL)–deficient and ACL-reconstructed knees and the effect of repair of ramp lesions. Study Design: Controlled laboratory study. Methods: Twelve matched pairs of human cadaveric knees were evaluated with a 6 degrees of freedom robotic system. All knees were subjected to an 88-N anterior tibial load, internal and external rotation torques of 5 N·m, and a simulated pivot-shift test of 10-N valgus force coupled with 5-N·m internal rotation. The paired knees were randomized to the cutting of either the meniscocapsular or the meniscotibial attachments after ACL reconstruction (ACLR). Eight comparisons of interest were chosen before data analysis was conducted. Data from the intact state were compared with data from the subsequent states. The following states were tested: intact (n = 24), ACL deficient (n = 24), ACL deficient with a meniscocapsular lesion (n = 12), ACL deficient with a meniscotibial lesion (n = 12), ACL deficient with both meniscocapsular and meniscotibial lesions (n = 24), ACLR with both meniscocapsular and meniscotibial lesions (n = 16), and ACLR with repair of both meniscocapsular and meniscotibial lesions (n = 16). All states were compared with the previous states. For the repair and reconstruction states, only the specimens that underwent repair were compared with their intact and sectioned states, thus excluding the specimens that did not undergo repair. Results: Cutting the meniscocapsular and meniscotibial attachments of the posterior horn of the medial meniscus significantly increased anterior tibial translation in ACL-deficient knees at 30° ( P ≤ .020) and 90° ( P < .005). Cutting both the meniscocapsular and meniscotibial attachments increased tibial internal (all P > .004) and external (all P < .001) rotation at all flexion angles in ACL-reconstructed knees. Reconstruction of the ACL in the presence of meniscocapsular and meniscotibial tears restored anterior tibial translation ( P > .053) but did not restore internal rotation ( P < .002), external rotation ( P < .002), and the pivot shift ( P < .05). To restore the pivot shift, an ACLR and a concurrent repair of the meniscocapsular and meniscotibial lesions were both necessary. Repairing the meniscocapsular and meniscotibial lesions after ACLR did not restore internal rotation and external rotation at angles >30°. Conclusion: Meniscocapsular and meniscotibial lesions of the posterior horn of the medial meniscus increased knee anterior tibial translation, internal and external rotation, and the pivot shift in ACL-deficient knees. The pivot shift was not restored with an isolated ACLR but was restored when performed concomitantly with a meniscocapsular and meniscotibial repair. However, the effect of this change was minimal; although statistical significance was found, the overall clinical significance remains unclear. The ramp lesion repair used in this study failed to restore internal rotation and external rotation at higher knee flexion angles. Further studies should examine improved meniscus repair techniques for root tears combined with ACLRs. Clinical Relevance: Meniscal ramp lesions should be repaired at the time of ACLR to avoid continued knee instability (anterior tibial translation) and to eliminate the pivot-shift phenomenon.


2020 ◽  
Vol 48 (3) ◽  
pp. 573-580 ◽  
Author(s):  
Guan-yang Song ◽  
Hui Zhang ◽  
Jin Zhang ◽  
Zhi-jun Zhang ◽  
Tong Zheng ◽  
...  

Background: Anterior tibial subluxation (ATS) in extension after anterior cruciate ligament (ACL) injury highlights an increased anterior position of the tibia relative to the femur. Recent studies demonstrated that subluxation is sometimes irreducible and the normal tibiofemoral relationship is not restored by ACL reconstruction (ACLR), which raises concerns regarding clinical outcomes after ACLR. Hypothesis: Excessive preoperative ATS in extension is associated with inferior knee stability after anatomic ACLR. Study Design: Cohort study; Level of evidence, 3. Methods: From March 2016 to January 2017, a total of 487 consecutive patients with clinically diagnosed noncontact ACL injuries who underwent primary anatomic ACLR were retrospectively analyzed. Of these patients, 430 met the criteria for inclusion in this study. Anterior subluxation of the lateral and medial compartments (ASLC and ASMC) in extension relative to the femoral condyles was measured on preoperative magnetic resonance imaging. Twenty patients (study group) who demonstrated excessive (>10 mm) ASLC and ASMC in extension were matched 1:2 to 40 participants (control group) who showed minimal or no (<3 mm) ASLC and ASMC in extension. The amount of ASLC and ASMC in extension relative to the femoral condyles at 2 years postoperatively was the primary outcome. Moreover, the Lysholm score, IKDC grade (International Knee Documentation Committee), and stability assessments (pivot-shift test and KT-1000 arthrometer side-to-side difference) were evaluated preoperatively and at the last follow-up visit. Results: The preoperative mean ASLC and ASMC in extension of the study group were both significantly larger than those of the control group (study group vs control group: ASLC, 13.5 mm vs 1.2 mm; ASMC, 12.4 mm vs 1.0 mm; P < .05). Moreover, patients in the study group showed significantly larger posterior tibial slope than the patients in the control group (17.8°± 2.5° vs 9.5°± 1.5°; P < .05). At the final follow-up visit, the mean ASLC and ASMC of the study group were 8.1 mm and 7.3 mm, which were significantly larger than those of the control group (ASLC, 0.9 mm; ASMC, 0.7 mm; P < .05). In addition, the study group showed inferior knee stability when compared with the control group in terms of both the pivot-shift test (study group vs control group: 2 grade 2, 10 grade 1, and 8 grade 0 vs 1 grade 1 and 39 grade 0; P < .05) and the KT-1000 arthrometer side-to-side difference (study group vs control group: 4.4 ± 1.2 mm vs 1.5 ± 0.6 mm; P < .05). Furthermore, the study group showed significantly lower mean Lysholm score (study group vs control group: 80.3 ± 6.3 vs 93.3 ± 4.3, P < .05) and IKDC grading results (study group vs control group: 3 grade C, 16 grade B, and 1 grade A vs 3 grade B and 37 grade A; P < .05) as compared with the control group. Conclusion: In this short-term study, the excessive (>10 mm) preoperative ATS in extension after ACL injury was associated with inferior knee stability after anatomic ACLR.


2019 ◽  
Vol 47 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
Frank R. Noyes ◽  
Lauren E. Huser ◽  
Brad Ashman ◽  
Michael Palmer

Background: Anterior cruciate ligament (ACL) graft conditioning protocols to decrease postoperative increases in anterior tibial translation and pivot-shift instability have not been established. Purpose: To determine what ACL graft conditioning protocols should be performed at surgery to decrease postoperative graft elongation after ACL reconstruction. Study Design: Controlled laboratory study. Methods: A 6 degrees of freedom robotic simulator evaluated 3 ACL graft constructs in 7 cadaver knees for a total of 19 graft specimens. Knees were tested before and after ACL sectioning and after ACL graft conditioning protocols before reconstruction. The ACL grafts consisted of a 6-strand semitendinosus-gracilis TightRope, bone–patellar tendon–bone TightRope, and bone–patellar tendon–bone with interference screws. Two graft conditioning protocols were used: (1) graft board tensioning (20 minutes, 80 N) and (2) cyclic conditioning (5°-120° of flexion, 90-N anterior tibial load) after graft reconstruction to determine the number of cycles needed to obtain a steady state with no graft elongation. After conditioning, the grafts were cycled a second time under anterior-posterior loading (100 N, 25° of flexion) and under pivot-shift loading (100 N anterior, 5-N·m internal rotation, 7 N·m valgus) to verify that the ACL flexion-extension conditioning protocol was effective. Results: Graft board tensioning did not produce a steady-state graft. Major increases in anterior tibial translation occurred in the flexion-extension graft-loading protocol at 25° of flexion (mean ± SD: semitendinosus-gracilis TightRope, 3.4 ± 1.1 mm; bone–patellar tendon–bone TightRope, 3.2 ± 1.0 mm; bone–patellar tendon–bone with interference screws, 2.4 ± 1.5 mm). The second method of graft conditioning (40 cycles, 5°-120° of flexion, 90-N anterior load) produced a stable conditioned state for all grafts, as the anterior translations of the anterior-posterior and pivot-shift cycles were statistically equivalent ( P < .05, 1-20 cycles). Conclusion: ACL graft board conditioning protocols are not effective, leading to deleterious ACL graft elongations after reconstruction. A secondary ACL graft conditioning protocol of 40 flexion-extension cycles under 90-N graft loading was required for a well-conditioned graft, preventing further elongation and restoring normal anterior-posterior and pivot-shift translations. Clinical Relevance: There is a combined need for graft board tensioning and robust cyclic ACL graft loading before final graft fixation to restore knee stability.


Author(s):  
Riccardo Cristiani ◽  
Sofia Viheriävaara ◽  
Per-Mats Janarv ◽  
Gunnar Edman ◽  
Magnus Forssblad ◽  
...  

Abstract Purpose To evaluate and compare knee laxity and functional knee outcome between primary and contralateral anterior cruciate ligament (ACL) reconstruction. Methods Patients who underwent primary and subsequent contralateral ACL reconstruction (ACLR) at Capio Artro Clinic, Stockholm, Sweden, from 2001 to 2017, were identified in our local database. The inclusion criteria were: the same patients who underwent primary and contralateral hamstring tendon or bone-patellar tendon-bone autograft ACLR and no associated ligament injuries. The KT-1000 arthrometer, with an anterior tibial load of 134 N, was used to evaluate knee laxity preoperatively and 6 months postoperatively. The Knee injury and Osteoarthritis Outcome Score (KOOS) was collected preoperatively and at the 1-year follow-up. Results A total of 326 patients with isolated primary and contralateral ACLR met the inclusion criteria (47.9% males; mean age at primary ACLR 23.9 ± 9.4 years and contralateral ACLR 27.9 ± 10.1 years). The arthrometric laxity measurements were available for primary and contralateral ACLR for 226 patients. The mean preoperative and postoperative anterior tibial translation (ATT), as well as the mean ATT reduction from preoperatively to postoperatively, did not differ significantly between primary and contralateral ACLR. The KOOS was available for primary and contralateral ACLR for 256 patients. No significant differences were found preoperatively and at the 1-year follow-up between primary and contralateral ACLR for any of the five KOOS subscales. Conclusion The findings in this study showed that anterior knee laxity and functional knee outcome after contralateral ACLR are comparable to those after primary ACLR. It is important for clinicians to counsel patients about their expectations after contralateral ACLR. This study shows that the results after contralateral ACLR in terms of knee laxity and functional knee outcome are predictable and likely to be comparable to those after primary ACLR. Level of evidence Level III.


Author(s):  
R. W. Colbrunn ◽  
J. E. Dumpe ◽  
T. F. Bonner ◽  
J. D. Kolmodin ◽  
W. K. Barsoum ◽  
...  

A pivot shift is a useful exam for evaluating anterior cruciate ligament (ACL) reconstruction surgery. A positive result is a perceived “clunk” and is quantified by the kinematics that occur during the tibial reduction phase. In vitro evaluation of ACL reconstruction techniques includes robotic testing of cadaveric knees where the applied loads represent estimated in situ loads. Early understanding of the mechanism of the pivot shift has resulted in a simplified representation where static “rotary loads” (10Nm valgus torque, 5Nm internal tibial torque) are applied at a few discrete flexion angles, and changes in anterior tibial translation (ATT) are compared [1]. Building upon this work, and with advances in technology, we are now able to create a robotic test that is more like the clinical exam. Our hypothesis was that kinematics produced during the robotically simulated pivot shift would be similar to the clinical pivot shift but would be significantly different from the rotary loads method. The ability for a test to produce larger kinematic differences between native and deficient states may suggest a more robust methodology by which to evaluate the efficacy of ACL reconstructions.


2020 ◽  
Vol 8 (9_suppl7) ◽  
pp. 2325967120S0052
Author(s):  
Ming Zhou

Introduction: A review of the literature demonstrates that injury of the lateral meniscus, anterolateral capsule, and iliotibial(IT ) band or small lateral tibial plateau aggravate the instability of knee and contributes to a high-grade pivot shift in the ACL-deficient knee. Hypotheses: The hypothesis was that disruption of posterior root of the lateral meniscus will further destabilize the ACL-deficient knee and simulated a high-grade pivot shift but posterior root of medial meniscal not. Methods: 6 fresh-frozen cadaveric knees was performed the next test in a custom activity simulator.1.Determine the effect of PRLMT on the stability of ACL-deficient knee.In the pivot shift test, ITB force (50, 75, 100, 125, 150, and 175 N), internal rotation moments (1, 2, and 3 N.m),and valgus moments (5 and 7 N.m). tibial translation of front drawer test were performed by applying a 90-N anterior


2021 ◽  
Vol 9 (4) ◽  
pp. 232596712199806
Author(s):  
Michèle N.J. Keizer ◽  
Egbert Otten ◽  
Chantal M.I. Beijersbergen ◽  
Reinoud W. Brouwer ◽  
Juha M. Hijmans

Background: At 1 year after anterior cruciate ligament reconstruction (ACLR), two-thirds of patients manage to return to sports (copers), whereas one-third of patients do not return to sports (noncopers). Copers and noncopers have different muscle activation patterns, and noncopers may not be able to control dynamic anterior tibial translation (ATTd) as well as copers. Purpose/Hypothesis: To investigate whether (1) there is a positive correlation between passive ATT (ATTp; ie, general joint laxity) and ATTd during jump landing, (2) whether ATTd is moderated by muscle activating patterns, and (3) whether there is a difference in moderating ATTd between copers and noncopers. We hypothesized that patients who have undergone ACLR compensate for ATTd by developing muscle strategies that are more effective in copers compared with noncopers. Study Design: Controlled laboratory study. Methods: A total of 40 patients who underwent unilateral ACLR performed 10 single-leg hops for distance with both legs. Lower body kinematic and kinetic data were measured using a motion-capture system, and ATTd was determined with an embedded method. Muscle activity was measured using electromyographic signals. Bilateral ATTp was measured using a KT-1000 arthrometer. In addition, the Beighton score was obtained. Results: There was no significant correlation between ATTp and ATTd in copers; however, there was a positive correlation between ATTp and ATTd in the operated knee of noncopers. There was a positive correlation between the Beighton score and ATTp as well as between the Beighton score and ATTd in both copers and noncopers in the operated knee. Copers showed a negative correlation between ATTd and gastrocnemius activity in their operated leg during landing. Noncopers showed a positive correlation between ATTd and knee flexion moment in their operated knee during landing. Conclusion: Copers used increased gastrocnemius activity to reduce ATTd, whereas noncopers moderated ATTd by generating a smaller knee flexion moment. Clinical Relevance: This study showed that copers used different landing techniques than noncopers. Patients who returned to sports after ACLR had sufficient plantar flexor activation to limit ATTd.


2021 ◽  
Vol 49 (4) ◽  
pp. 935-940
Author(s):  
Brendon C. Mitchell ◽  
Matthew Y. Siow ◽  
Tracey Bastrom ◽  
James D. Bomar ◽  
Andrew T. Pennock ◽  
...  

Background: The coronal lateral collateral ligament (LCL) sign is the presence of the full length of the LCL visualized on a single coronal magnetic resonance imaging (MRI) slice at the posterolateral corner of the knee. The coronal LCL sign has been shown to be associated with elevated measures of anterior tibial translation and internal rotation in the setting of anterior cruciate ligament (ACL) tear. Hypothesis: The coronal LCL sign (with greater anterior translation, internal rotation, and posterior slope of the tibia) will indicate a greater risk for graft failure after ACL reconstructive surgery. Study Design: Cohort study; Level of evidence, 3. Methods: Retrospective review was performed of adolescent patients with ACL reconstruction: a cohort without graft failure and a cohort with graft failure. MRI was utilized to measure tibial translation and femorotibial rotation and to identify the coronal LCL sign. The posterior tibial slope was measured on lateral radiographs. Patient-reported outcomes were collected. Results: We identified 114 patients with no graft failure and 39 patients with graft failure who met all criteria, with a mean follow-up time of 3.5 years (range, 2-9.4 years). Anterior tibial translation was associated with anterolateral complex injury ( P < .001) but not graft failure ( P = .06). Internal tibial rotation was associated with anterolateral complex injury ( P < .001) and graft failure ( P = .042). Posterior tibial slope was associated with graft failure ( P = .044). The coronal LCL sign was associated with anterolateral complex injury ( P < .001) and graft failure ( P = .013), with an odds ratio of 4.3 for graft failure (95% CI, 1.6-11.6; P = .003). Subjective patient-reported outcomes and return to previous level of sport were not associated with failure. Comparison of MRI before and after ACL reconstruction in the graft failure cohort demonstrated a reduced value in internal rotation ( P = .003) but no change in coronal LCL sign ( P = .922). Conclusion: Our study demonstrates that tibial internal rotation and posterior slope are independent predictors of ACL graft failure in adolescents. Although the value of internal rotation could be improved with ACL reconstruction, the presence of the coronal LCL sign persisted over time and was predictive of graft rupture (without the need to make measurements or memorize values of significant risk). Together, these factors indicate that greater initial knee deformity after initial ACL tear predicts greater risk for future graft failure.


Sign in / Sign up

Export Citation Format

Share Document