scholarly journals Muscle Activity of the Triceps Surae With Novel Propulsion Heel-Lift Orthotics in Recreational Runners

2020 ◽  
Vol 8 (10) ◽  
pp. 232596712095691
Author(s):  
Rubén Sánchez-Gómez ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
Carlos Romero Morales ◽  
Marta Elena Losa-Iglesias ◽  
Aitor Castrillo de la Fuente ◽  
...  

Background: The triceps surae muscle has been identified with propulsion during running gait, and typical heel-lift orthotics (THOs) have been used to treat some sports injuries of this structural-biomechanical unit. The effects of a novel propulsion heel-lift orthotic (PHO) on surface electromyography (EMG) activity of the gastrocnemius during a full cycle of running have yet to be tested. Purpose/Hypothesis: We aimed to assess EMG changes in gastrocnemius medialis and lateralis muscle activity when wearing THOs, PHOs, or neutral sports shoes only (SO) during running. We hypothesized that EMG activity of the triceps surae muscle would be lower for PHOs than THOs or SO during running. Study Design: Controlled laboratory study. Methods: A total of 26 healthy, regular recreational runners of both sexes (mean age, 33.58 ± 6.02 years) with a neutral Foot Posture Index and rearfoot strike pattern were recruited to run on a treadmill at 9 km/h using aleatory THOs of 6 and 9 mm, PHOs, and SO while EMG activity of the gastrocnemius medialis and lateralis muscles was recorded over a 30-second period. Intraclass correlation coefficients were calculated to assess reliability. Results: The intraclass correlation coefficient values indicated near perfect reliability, ranging from 0.801 for 6-mm THOs to 0.959 for SO in the gastrocnemius lateralis muscle. EMG activity of the gastrocnemius lateralis muscle was greater for PHOs (25.516 ± 4.780 mV) than for SO (23.140 ± 4.150 mV) ( P < .05), but EMG activity of the gastrocnemius medialis muscle did not show any statistically significant difference between conditions (23.130 ± 2.980 mV vs 26.315 ± 2.930 mV, respectively) ( P = .3). Conclusion: A novel PHO may increase muscle activity of the gastrocnemius lateralis during a full cycle of running gait; consequently, its prescription to treat triceps surae muscle injuries is cautioned. Clinical Relevance: The prescription of novel PHOs could increase EMG activity, which has not been previously described.

2011 ◽  
Vol 21 (5) ◽  
pp. 819-826 ◽  
Author(s):  
Kim Hébert-Losier ◽  
Anthony G. Schneiders ◽  
José A. García ◽  
S. John Sullivan ◽  
Guy G. Simoneau

2020 ◽  
Author(s):  
Jasmin Frischholz ◽  
Brent J. Raiteri ◽  
Daniel Hahn

AbstractFollowing active muscle stretch, a muscle’s force capacity is increased, which is known as residual force enhancement (rFE). As earlier studies found modulations of cortical excitability in the presence of rFE, this study aimed to test whether corticospinal drive contributes to rFE. Fourteen participants performed submaximal plantar flexion stretch-hold and fixed-end contractions at 30% of their maximal voluntary soleus muscle activity in a dynamometer. During the steady state of the contractions, participants either received subthreshold or suprathreshold transcranial magnetic stimulation (TMS) of their motor cortex while triceps surae muscle responses to stimulation were obtained by electromyography (EMG) and net plantar flexion torque was recorded. B-mode ultrasound imaging was used to confirm muscle stretch during stretch-hold contractions in a subset of participants. Following stretch of the plantar flexors, an average rFE of 7% and 11% was observed for contractions with subthreshold and suprathreshold TMS, respectively. 41-46 milliseconds following subthreshold TMS, triceps surae muscle activity was suppressed by 19-25%, but no difference in suppression was found between contraction conditions. Similarly, the reduction in plantar flexion torque following subthreshold TMS was not different between contraction conditions. Motor evoked potentials, silent periods and superimposed twitches following suprathreshold stimulations were also not different between contraction conditions. As stimulations of the motor cortex by TMS did not result in any differences between stretch-hold and fixed-end contractions, we conclude that corticospinal drive does not contribute to the increased torque production in the presence of rFE following active muscle stretch.New & NoteworthyThis study tested whether corticospinal drive contributes to the increased torque capacity in the presence of rFE. Through subthreshold and suprathreshold TMS of the motor cortex, triceps surae muscle activity was respectively supressed or increased in the presence of rFE and during a reference contraction without rFE. As similar responses were observed between contraction contractions, we conclude that corticospinal drive likely does not contribute to the increased torque capacity in the presence of rFE.


2000 ◽  
Vol 88 (3) ◽  
pp. 811-816 ◽  
Author(s):  
Kenya Kumagai ◽  
Takashi Abe ◽  
William F. Brechue ◽  
Tomoo Ryushi ◽  
Susumu Takano ◽  
...  

The purpose of this study was to investigate the relationship between muscle fascicle length and sprint running performance in 37 male 100-m sprinters. The sample was divided into two performance groups by the personal-best 100-m time: 10.00–10.90 s (S10; n = 22) and 11.00–11.70 s (S11; n = 15). Muscle thickness and fascicle pennation angle of the vastus lateralis and gastrocnemius medialis and lateralis muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Standing height, body weight, and leg length were similar between groups. Muscle thickness was similar between groups for vastus lateralis and gastrocnemius medialis, but S10 had a significantly greater gastrocnemius lateralis muscle thickness. S10 also had a greater muscle thickness in the upper portion of the thigh, which, given similar limb lengths, demonstrates an altered “muscle shape.” Pennation angle was always less in S10 than in S11. In all muscles, S10 had significantly greater fascicle length than did S11, which significantly correlated with 100-m best performance ( rvalues from −0.40 to −0.57). It is concluded that longer fascicle length is associated with greater sprinting performance.


Author(s):  
Monika Błaszczyszyn ◽  
Agnieszka Szczęsna ◽  
Katarzyna Piechota

Objective: In this publication, we suggest that young adults and seniors use various defense mechanisms to counteract loss of balance. One of the hypotheses is the change in the coordination of antagonistic muscle groups, especially within the ankles. In this study, we tried to determine if there is a relationship between the condition from resilient, to pre-frail, to frail and the ability to maintain balance during free standing and balance tasks. The aim of the study was to define the importance of muscle activity in the ankle joint, dorsal flexor of the foot for the following: tibialis anterior (TA), plantar flexor of the foot gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and peroneus longus (PER), during balance tasks with eyes open (EO) and closed (EC). We hypothesized that there are differences in the activity and co-activation of the tested muscles in young and older women, which may indicate an increased risk of falls and walking disorders. Materials and methods: A group of 20 women qualified for the study. The group was divided into two subgroups, young (G1) and elderly women (G2). The aim of the study was to define the importance of muscle activity in the ankle joint, dorsal flexor of the foot for the following: tibialis anterior (TA), plantar flexor of the foot gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and peroneus longus (PER), during balance tasks with eyes open (EO) and closed (EC). Results: In this study, we observed significant differences between groups in the maximum and mean values of electromyography activity (EMG) activation of the examined muscles on different types of surfaces and with open and closed eyes. Older women generated higher values of EMG activation in all muscles except the gastrocnemius medialis muscle. The results were significant for co-activation at rest for muscles as follows: tibialis anterior and gastrocnemius medialis with eyes closed (p = 0.01) and peroneus and gastrocnemius lateralis at rest with eyes open (p = 0.03), eyes closed (p = 0.04), and on a foam (p = 0.02). The sEMG amplitude of the tested muscles means that agonist muscle activity changed relative to antagonistic muscle activity. Conclusions: Activation of sEMG and coordination of ankle muscles during balance tasks change with age. It can be hypothesized that assessment of balance during free standing and equivalent tasks can predict the state of frailty, after taking into account other physiological variables that are believed to affect balance control.


2012 ◽  
Vol 26 (11) ◽  
pp. 3124-3133 ◽  
Author(s):  
Kim Hébert-Losier ◽  
Anthony G. Schneiders ◽  
José A. García ◽  
S. John Sullivan ◽  
Guy G. Simoneau

2010 ◽  
Vol 108 (5) ◽  
pp. 1389-1394 ◽  
Author(s):  
Antoine Nordez ◽  
François Hug

This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression ( P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects ( R2 = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% ( trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% ( trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different ( P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.


2010 ◽  
Vol 103 (3) ◽  
pp. 1262-1274 ◽  
Author(s):  
R. af Klint ◽  
N. J. Cronin ◽  
M. Ishikawa ◽  
T. Sinkjaer ◽  
M. J. Grey

Plantar flexor series elasticity can be used to dissociate muscle–fascicle and muscle–tendon behavior and thus afferent feedback during human walking. We used electromyography (EMG) and high-speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behavior in 19 healthy volunteers as they walked across a platform. On random trials, the platform was dropped (8 cm, 0.9 g acceleration) or held at a small inclination (up to ±3° in the parasagittal plane) with respect to level ground. Dropping the platform in the mid and late phases of stance produced a depression in the soleus muscle activity with an onset latency of about 50 ms. The reduction in ground reaction force also unloaded the plantar flexor muscles. The soleus muscle fascicles shortened with a minimum delay of 14 ms. Small variations in platform inclination produced significant changes in triceps surae muscle activity; EMG increased when stepping on an inclined surface and decreased when stepping on a declined surface. This sensory modulation of the locomotor output was concomitant with changes in triceps surae muscle fascicle and gastrocnemius tendon length. Assuming that afferent activity correlates to these mechanical changes, our results indicate that within-step sensory feedback from the plantar flexor muscles automatically adjusts muscle activity to compensate for small ground irregularities. The delayed onset of muscle fascicle movement after dropping the platform indicates that at least the initial part of the soleus depression is more likely mediated by a decrease in force feedback than length-sensitive feedback, indicating that force feedback contributes to the locomotor activity in human walking.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0258014
Author(s):  
Samantha May ◽  
Simon Locke ◽  
Michael Kingsley

Ultrasonography is widely used to measure gastrocnemius muscle architecture; however, it is unclear if values obtained from digitised images are sensitive enough to track architectural responses to clinical interventions. The purpose of this study was to explore the reliability and determine the minimal detectable change (MDC) of gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle architecture using ultrasound in a clinical setting. A trained sonographer obtained three B-mode images from each of the GM and GL muscles in 87 volunteers (44 males, 43 females; 22±9 years of age) on two separate occasions. Three independent investigators received training, then digitised the images to determine intra-rater, inter-rater, and test-retest reliability for fascicle length (FL), pennation angle (θ) and muscle thickness. Median FL, θ, and muscle thickness for GM and GL were 53.6–55.7 mm and 65.8–69.3 mm, 18.7–19.5° and 11.9–12.5°, and 12.8–13.2 mm and 15.9–16.9 mm, respectively. Intra- and inter-rater reliability of manual digitisation was excellent for all parameters. Test-retest reliability was moderate to excellent with intraclass correlation coefficient (ICC) values ≥0.80 for FL, ≥0.61 for θ, and ≥0.81 for muscle thickness, in both GM and GL. The respective MDC for GM and GL FL, θ, and muscle thickness was ≤12.1 mm and ≤18.00 mm, ≤6.4° and ≤4.2°, and ≤3.2 mm and ≤3.1 mm. Although reliable, the relatively large MDC suggest that clinically derived ultrasound measurements of muscle architecture in GM and GL are more likely to be useful to detect differences between populations than to detect changes in muscle architecture following interventions.


Sign in / Sign up

Export Citation Format

Share Document