scholarly journals Representation of actions and outcomes in medial prefrontal cortex during delayed conditional decision-making: Population analyses of single neuron activity

2018 ◽  
Vol 2 ◽  
pp. 239821281877386 ◽  
Author(s):  
Miranda J. Francoeur ◽  
Robert G. Mair

Background: To respond adaptively in a dynamic environment, it is important for organisms to utilise information about recent events to decide between response options. Methods: To examine the role of medial prefrontal cortex in adaptive decision-making, we recorded single neuron activity in rats performing a dynamic delayed non-matching to position task. Results: We recorded activity from 1335 isolated neurons, 458 (34%) with criterion event-related activity, of which 431 (94%) exhibited 1 of 10 distinct excitatory response types: five at different times relative to delivery (or lack) of reinforcement following sample and choice responses and five correlated with movements or lever press actions that occurred multiple times in each trial. Normalised population averages revealed a precisely timed cascade of population responses representing the temporal organisation behavioural events that constitute delayed non-matching to position trials. Firing field analyses identified a subset of neurons with restricted spatial fields: responding to the conjunction of a behavioural event with a specific location. Anatomical analyses showed considerable overlap in the distribution of different response types in medial prefrontal cortex with a significant trend for dorsal areas to contain more neurons with action-related activity and ventral areas more responses related to action outcomes. Conclusion: These results indicate that medial prefrontal cortex contains discrete populations of neurons that represent the temporal organisation of actions and outcomes during delayed non-matching to position trials. They support the hypothesis that medial prefrontal cortex promotes flexible control of complex behaviours by action–outcome contingencies.

2014 ◽  
Vol 111 (12) ◽  
pp. 2644-2655 ◽  
Author(s):  
Shun-nan Yang ◽  
Stephen Heinen

Single-unit recording in monkeys and functional imaging of the human frontal lobe indicate that the supplementary eye field (SEF) and the frontal eye field (FEF) are involved in ocular decision making. To test whether these structures have distinct roles in decision making, single-neuron activity was recorded from each structure while monkeys executed an ocular go/nogo task. The task rule is to pursue a moving target if it intersects a visible square or “go zone.” We found that most SEF neurons showed differential go/nogo activity during the delay period, before the target intersected the go zone (delay period), whereas most FEF neurons did so after target intersection, during the period in which the movement was executed (movement period). Choice probability (CP) for SEF neurons was high in the delay period but decreased in the movement period, whereas for FEF neurons it was low in the delay period and increased in the movement period. Directional selectivity of SEF neurons was low throughout the trial, whereas that of FEF neurons was highest in the delay period, decreasing later in the trial. Increasing task difficulty led to later discrimination between go and nogo in both structures and lower CP in the SEF, but it did not affect CP in the FEF. The results suggest that the SEF interprets the task rule early but is less involved in executing the motor decision than is the FEF and that these two areas collaborate dynamically to execute ocular decisions.


2020 ◽  
Author(s):  
Seongmin A. Park ◽  
Douglas S. Miller ◽  
Erie D. Boorman

ABSTRACTGeneralizing experiences to guide decision making in novel situations is a hallmark of flexible behavior. It has been hypothesized such flexibility depends on a cognitive map of an environment or task, but directly linking the two has proven elusive. Here, we find that discretely sampled abstract relationships between entities in an unseen two-dimensional (2-D) social hierarchy are reconstructed into a unitary 2-D cognitive map in the hippocampus and entorhinal cortex. We further show that humans utilize a grid-like code in several brain regions, including entorhinal cortex and medial prefrontal cortex, for inferred direct trajectories between entities in the reconstructed abstract space during discrete decisions. Moreover, these neural grid-like codes in the entorhinal cortex predict neural decision value computations in the medial prefrontal cortex and temporoparietal junction area during choice. Collectively, these findings show that grid-like codes are used by the human brain to infer novel solutions, even in abstract and discrete problems, and suggest a general mechanism underpinning flexible decision making and generalization.


Sign in / Sign up

Export Citation Format

Share Document