scholarly journals Arduino-Based Novel Hardware Design for Liquid Helium Level Measurement

2018 ◽  
Vol 23 (5) ◽  
pp. 456-462 ◽  
Author(s):  
Pathan Fayaz Khan ◽  
S. Sengottuvel ◽  
Rajesh Patel ◽  
Awadhesh Mani ◽  
K. Gireesan

Liquid helium (LHe) is used as a cryogen in a variety of applications involving superconductivity and is routinely monitored for conducting low-temperature experiments. Thermoacoustic oscillations, which are inevitably present inside closed LHe containers, are utilized for level detection by sensing the vibrations at the warm end of a thin capillary tube inserted into the Dewar. The position of the capillary tube at which a sudden change occurs in these oscillations is manually sensed to identify the liquid level. The present work proposes a novel hardware design to identify the thermoacoustic oscillations in a reliable way using an accelerometer driven by an Arduino microcontroller. Further, an automated approach has been devised to quantify the rate of change of these helium oscillations to measure the LHe level. The proposed method has been tested during several trials on a 120 L and 100 L capacity Dewar using the proposed hardware, and the mean error in measuring the LHe level was calculated to be less than 1 cm in comparison with the gold standard niobium-titanium level sensor. The results encourage the use of the proposed method to evolve as a cost-effective alternative to the widely used superconducting level sensors in measuring LHe level.

Cryogenics ◽  
1999 ◽  
Vol 39 (5) ◽  
pp. 485-487 ◽  
Author(s):  
D.K Hilton ◽  
J.S Panek ◽  
M.R Smith ◽  
S.W Van Sciver

Cryogenics ◽  
1986 ◽  
Vol 26 (1) ◽  
pp. 45-46 ◽  
Author(s):  
J. Cosier

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3056
Author(s):  
Baiqian Shi ◽  
Stephen Catsamas ◽  
Peter Kolotelo ◽  
Miao Wang ◽  
Anna Lintern ◽  
...  

High-resolution data collection of the urban stormwater network is crucial for future asset management and illicit discharge detection, but often too expensive as sensors and ongoing frequent maintenance works are not affordable. We developed an integrated water depth, electrical conductivity (EC), and temperature sensor that is inexpensive (USD 25), low power, and easily implemented in urban drainage networks. Our low-cost sensor reliably measures the rate-of-change of water level without any re-calibration by comparing with industry-standard instruments such as HACH and HORIBA’s probes. To overcome the observed drift of level sensors, we developed an automated re-calibration approach, which significantly improved its accuracy. For applications like monitoring stormwater drains, such an approach will make higher-resolution sensing feasible from the budget control considerations, since the regular sensor re-calibration will no longer be required. For other applications like monitoring wetlands or wastewater networks, a manual re-calibration every two weeks is required to limit the sensor’s inaccuracies to ±10 mm. Apart from only being used as a calibrator for the level sensor, the conductivity sensor in this study adequately monitored EC between 0 and 10 mS/cm with a 17% relative uncertainty, which is sufficient for stormwater monitoring, especially for real-time detection of poor stormwater quality inputs. Overall, our proposed sensor can be rapidly and densely deployed in the urban drainage network for revolutionised high-density monitoring that cannot be achieved before with high-end loggers and sensors.


Cryogenics ◽  
1972 ◽  
Vol 12 (3) ◽  
pp. 234 ◽  
Author(s):  
J.M. Laplant ◽  
D.J. Flood

1988 ◽  
Vol 64 (2) ◽  
pp. 577-584 ◽  
Author(s):  
G. Miserocchi ◽  
D. Negrini ◽  
M. Pistolesi ◽  
C. R. Bellina ◽  
M. C. Gilardi ◽  
...  

We studied the vertical movement of 2 mg technetium-labeled albumin injected intrapleurally in 0.5 ml saline (15% of pleural liquid volume) in eight spontaneously breathing anesthetized dogs subject to a sudden change in posture (prone to supine or vice versa). The albumin movements were evaluated through a large field gamma camera placed laterally to the animal and detecting total (AT) and regional activities from two superimposed equal areas (At and Ab, top and bottom, respectively). The At/Ab ratio decreased from 2.1 to 1.3 in four animals up to 20 min from the change in posture and from 0.9 to 0.5 in four more animals studied from 50 to 90 min from turning maneuver. The rate of change in At and Ab was similar in the two groups of animals and unaffected by the acquisition posture. AT decreased by 7.7 and 3.5% for the two groups, respectively, reflecting albumin clearance from the pleural space. The opposite time course of regional activities and the independence of their rate of change of the At/Ab ratio and of the animal posture suggest a top-to-bottom albumin transfer occurring through a bulk flow of liquid estimated at 0.006 ml.kg-1.h-1. The data are consistent with a measured vertical pleural liquid pressure gradient that does not reflect a hydrostatic condition.


2019 ◽  
pp. 52-54
Author(s):  
K. K. Kim ◽  
◽  
A. A. Tkachuk ◽  
A. A. Kuznetsov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document