scholarly journals Immunoanatomic dissection of the human urinary tract by monoclonal antibodies.

1984 ◽  
Vol 32 (10) ◽  
pp. 1035-1040 ◽  
Author(s):  
C Cordon-Cardo ◽  
N H Bander ◽  
Y Fradet ◽  
C L Finstad ◽  
W F Whitmore ◽  
...  

The immunoanatomy of the human kidney and urinary tract has been analyzed by a panel of mouse anti-human monoclonal antibodies that define specific domains and structures. The differentiation antigens detected by these monoclonal antibodies represent a series of glycoproteins characteristic of different cell types. They differ from the blood group antigens and appear to be distinct from other antigens previously described within the kidney or urinary tract. The antigens recognized by these monoclonal antibodies represent an immunohistologic dissection of the human nephron. These antibodies have a broad range of potential applications in studying embryogenesis and pathogenesis of nonneoplastic and neoplastic diseases of the human kidney and urothelium.

2013 ◽  
Vol 86 (4) ◽  
pp. 558-567 ◽  
Author(s):  
Kyoko Higo-Moriguchi ◽  
Haruko Shirato ◽  
Yuichi Someya ◽  
Yoshikazu Kurosawa ◽  
Naokazu Takeda ◽  
...  

1991 ◽  
Vol 1 (2) ◽  
pp. 91-96 ◽  
Author(s):  
K. Thompson ◽  
G. Barden ◽  
J. Sutherland ◽  
I. Beldon ◽  
M. Melamed

1987 ◽  
Vol 101 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Dominique Goossens ◽  
Françoise Champomier ◽  
Philippe Rouger] ◽  
Charles Salmon

1998 ◽  
Vol 66 (8) ◽  
pp. 3856-3861 ◽  
Author(s):  
A. E. Stapleton ◽  
M. R. Stroud ◽  
S. I. Hakomori ◽  
W. E. Stamm

ABSTRACT Women with a history of recurrent Escherichia coliurinary tract infections (UTIs) are significantly more likely to be nonsecretors of blood group antigens than are women without such a history, and vaginal epithelial cells (VEC) from women who are nonsecretors show enhanced adherence of uropathogenic E. coli isolates compared with cells from secretors. We previously extracted glycosphingolipids (GSLs) from native VEC and determined that nonsecretors (but not secretors) selectively express two extended globoseries GSLs, sialosyl galactosyl globoside (SGG) and disialosyl galactosyl globoside (DSGG), which specifically bound uropathogenicE. coli R45 expressing a P adhesin. In this study, we demonstrated, by purifying the compounds from this source, that SGG and DSGG are expressed in human kidney tissue. We also demonstrated that SGG and DSGG isolated from human kidneys bind uropathogenic E. coli isolates expressing each of the three classes ofpap-encoded adhesins, including cloned isolates expressing PapG from J96, PrsG from J96, and PapG from IA2, and the wild-type isolates IA2 and R45. We metabolically 35S labeled these five E. coli isolates and measured their relative binding affinities to serial dilutions of SGG and DSGG as well as to globotriaosylceramide (Gb3) and globotetraosylceramide (Gb4), two other globoseries GSLs present in urogenital tissues. Each of the five E. coli isolates bound to SGG with the highest apparent avidity compared with their binding to DSGG, Gb3, and Gb4, and each isolate had a unique pattern of GSL binding affinity. These studies further suggest that SGG likely plays an important role in the pathogenesis of UTI and that its presence may account for the increased binding of E. colito uroepithelial cells from nonsecretors and for the increased susceptibility of nonsecretors to recurrent UTI.


2004 ◽  
Vol 287 (1) ◽  
pp. L1-L23 ◽  
Author(s):  
Jan Hirsch ◽  
Kirk C. Hansen ◽  
Alma L. Burlingame ◽  
Michael A. Matthay

Proteomics aims to study the whole protein content of a biological sample in one set of experiments. Such an approach has the potential value to acquire an understanding of the complex responses of an organism to a stimulus. The large vascular and air space surface area of the lung expose it to a multitude of stimuli that can trigger a variety of responses by many different cell types. This complexity makes the lung a promising, but also challenging, target for proteomics. Important steps made in the last decade have increased the potential value of the results of proteomics studies for the clinical scientist. Advances in protein separation and staining techniques have improved protein identification to include the least abundant proteins. The evolution in mass spectrometry has led to the identification of a large part of the proteins of interest rather than just describing changes in patterns of protein spots. Protein profiling techniques allow the rapid comparison of complex samples and the direct investigation of tissue specimens. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. These methodologies have made the application of proteomics on the study of specific diseases or biological processes under clinically relevant conditions possible. The quantity of data that is acquired with these new techniques places new challenges on data processing and analysis. This article provides a brief review of the most promising proteomics methods and some of their applications to pulmonary research.


1990 ◽  
Vol 144 (2 Part 2) ◽  
pp. 469-473 ◽  
Author(s):  
Joel Sheinfeld ◽  
Carlos Cordon-Cardo ◽  
William R. Fair ◽  
David D. Wartinger ◽  
Ronald Rabinowitz

Sign in / Sign up

Export Citation Format

Share Document