Immunoelectron microscopic localization of fibronectin in the smooth muscle layer of mouse small intestine.

1987 ◽  
Vol 35 (4) ◽  
pp. 411-417 ◽  
Author(s):  
K Kurisu ◽  
Y Ohsaki ◽  
K Nagata ◽  
T Kukita ◽  
H Yoshikawa ◽  
...  

We studied the ultrastructural distribution of fibronectin in the smooth muscle layer of mouse small intestine with affinity-purified antibodies using the immunogold technique. Fibronectin was present over the pericellular area extending from the cell membrane to the extracellular matrix beyond the basal lamina. Distribution of the glycoprotein over the pericellular area was heterogeneous, i.e., it was localized more abundantly in the narrow space between smooth muscle cells, the gaps having a width of 60-80 nm where the two dense bands in adjacent cells matched each other. Such localization suggests that fibronectin contributes to cell adhesion. Within the basement membrane, gold label was localized both in lamina lucida and lamina densa, more densely in the latter than in the former. Fibronectin was also co-distributed with collagen fibers in the extracellular matrix. Within smooth muscle cells, gold particles were observed on rough endoplasmic reticulum and secretory vesicle-like structures. These results suggest that smooth muscle cells synthesize fibronectin and secrete it as a component of the basal lamina and extracellular matrix.

2007 ◽  
Vol 293 (2) ◽  
pp. G438-G445 ◽  
Author(s):  
Lei Sha ◽  
Gianrico Farrugia ◽  
W. Scott Harmsen ◽  
Joseph H. Szurszewski

The aims of this study were to quantify the change in resting membrane potential (RMP) across the thickness of the circular muscle layer in the mouse and human small intestine and to determine whether the gradient in RMP is dependent on the endogenous production of carbon monoxide (CO). Conventional sharp glass microelectrodes were used to record the RMPs of circular smooth muscle cells at different depths in the human small intestine and in wild-type, HO2-KO, and W/WV mutant mouse small intestine. In the wild-type mouse and human intestine, the RMP of circular smooth muscle cells near the myenteric plexus was −65.3 ± 2 mV and −58.4 ± 2 mV, respectively, and −60.1 ± 2 mV and −49.1 ± 1 mV, respectively, in circular smooth muscle cells at the submucosal border. Oxyhemoglobin (20 μM), a trapping agent for CO, and chromium mesoporphyrin IX, an inhibitor of heme oxygenase, abolished the transwall gradient. The RMP gradients in mouse and human small intestine were not altered by NG-nitro-l-arginine (200 μM). No transwall RMP gradient was found in HO2-KO mice and W/WV mutant mice. TTX (1 μM) and 1H-[1,2,4-]oxadiazolo[4,3-a]quinoxalin-1-one (10 μM) had no effect on the RMP gradient. These data suggest that the gradient in RMP across the thickness of the circular muscle layer of mouse and human small intestine is CO dependent.


2006 ◽  
Vol 100 (3) ◽  
pp. 215-226 ◽  
Author(s):  
Takashi Sakamoto ◽  
Toshihiro Unno ◽  
Hayato Matsuyama ◽  
Mai Uchiyama ◽  
Mitsunobu Hattori ◽  
...  

Author(s):  
Daniel Andrés Osório ◽  
Silvio Roberto Consonni ◽  
Aline Mara dos Santos ◽  
Hernandes F. Carvalho

1998 ◽  
Vol 35 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Patricia Sansilvestri-Morel ◽  
Isabelle Nonotte ◽  
Marie-Pierre Fournet-Bourguignon ◽  
Alain Rupin ◽  
Jean-Noël Fabiani ◽  
...  

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Cheikh Seye ◽  
Wilbert Derbigny ◽  
Shaomin Qian

Rationale: Single nucleotide polymorphism (SNP) in the LGASL2 galectin-2 (Gal-2) gene leads to altered secretion of lymphotoxin-α (LT-α) and is associated with coronary artery disease. Objective:Our aim was to determine whether factors other than genetic variations in LGASL2 regulate LT-α release and to define the role of this pro-inflammatory in vascular smooth muscle cells (SMC). Methods and results: The proinflammatory cytokine lymphotoxin-alpha (LTA) is thought to contribute to the pathogenesis of atherosclerosis. However, the mechanisms that regulate its expression in VSMC are poorly understood. The ability of exogenous nucleotides to stimulate LTA production was evaluated in VSMC by ELISA. The P2Y 2 nucleotide receptor (P2Y 2 R) agonist UTP stimulates a strong and sustained release of LTA from wild-type but not P2Y 2 R -/- SMC. Assessment of LTA gene transcription by LTA promoter-luciferase construct indicated that LTA levels are controlled at the level of transcription. We show using RNAi techniques that knockdown of the actin-binding protein filamin-A (FLNa) severely impaired nucleotide-induced Rho activation and consequent Rho-mediated LTA secretion. Re-introduction of FLNa in FLNa RNAi SMC rescued UTP-induced LTA expression. In addition, we found UTP-stimulated LTA secretion is not sensitive to brefeldin A (BFA), which blocks the formation of vesicles involved in protein transport from the ER to the Golgi apparatus, suggesting that P2Y 2 R/filamin-mediated secretion of LTA is independent of the ER/Golgi secretory vesicle route. Furthermore, UTP selectively induces ICAM-1 expression in WT but not SMC expressing a truncated P2Y 2 R deficient in LTA secretion. Conclusion: These data suggest that P2Y 2 R recruits FLNa to provide a cytoskeletal scaffold necessary for Rho signaling pathway upstream of LTA release and subsequent stimulation of ICAM-1 expression on VSMC.


Sign in / Sign up

Export Citation Format

Share Document