scholarly journals Simultaneous characterization of efferent and afferent connectivity, neuroactive substances, and morphology of neurons.

1992 ◽  
Vol 40 (4) ◽  
pp. 457-465 ◽  
Author(s):  
F G Wouterlood ◽  
P H Goede ◽  
M P Arts ◽  
H J Groenewegen

We present a method for establishing in a single experiment four characteristics of individual neurons: the efferent and afferent connectivity, the morphology, and the content of a particular neuroactive substance. The connectivity of the neurons is determined by retrograde fluorescent tracing with Fast Blue and anterograde tracing with the lectin Phaseolus vulgaris leucoagglutinin (PHA-L). After fixation, the brain is cut into 300-micron thick slices. Neurons containing retrogradely transported Fast Blue are intracellularly injected with the fluorescent dye Lucifer Yellow to fill their dendritic trees. The slices are then resectioned at 20-40 microns. One section through the soma of a Lucifer Yellow-filled neuron is selected for the detection of a neuroactive substance contained by this cell [immunofluorescence, secondary antiserum conjugated to tetramethylrhodamine (TRITC)]. Using appropriate filtering, it can be determined in the fluorescence microscope whether a Lucifer Yellow-containing cell body has also been labeled with TRITC, i.e., whether it is immunoreactive for this neuroactive substance. The adjacent sections are subjected to dual peroxidase immunocytochemistry with different chromogens to visualize the PHA-L-labeled afferent fibers (nickel-enhanced diaminobenzidine, blue-black reaction product) and to stabilize the Lucifer Yellow (diaminobenzidine, brown reaction product) in the dendrites of the intracellular injected cells. The other sections are used for electron microscopic visualization of the transported PHA-L. The relationships between the PHA-L-labeled afferent fibers (blue color) and the dendrites of the intracellularly Lucifer Yellow-injected, retrogradely Fast Blue-labeled cells (brown color) are studied by light microscopy. The electron microscope supplies ultrastructural data on the PHA-L-labeled axon terminals.

1987 ◽  
Vol 105 (2) ◽  
pp. 679-689 ◽  
Author(s):  
K Sandvig ◽  
S Olsnes ◽  
O W Petersen ◽  
B van Deurs

Acidification of the cytosol of a number of different cell lines strongly reduced the endocytic uptake of transferrin and epidermal growth factor. The number of transferrin binding sites at the cell surface was increased in acidified cells. Electron microscopic studies showed that the number of coated pits at the cell surface was not reduced in cells with acidified cytosol. Experiments with transferrin-horseradish peroxidase conjugates and a monoclonal anti-transferrin receptor antibody demonstrated that transferrin receptors were present in approximately 75% of the coated pits both in control cells and in cells with acidified cytosol. The data therefore indicate that the reason for the reduced endocytic uptake of transferrin at internal pH less than 6.5 is an inhibition of the pinching off of coated vesicles. In contrast, acidification of the cytosol had only little effect on the uptake of ricin and the fluid phase marker lucifer yellow. Ricin endocytosed by cells with acidified cytosol exhibited full toxic effect on the cells. Although the pathway of this uptake in acidified cells remains uncertain, some coated pits may still be involved. However, the data are also consistent with the possibility that an alternative endocytic pathway involving smooth (uncoated) pits exists.


1995 ◽  
Vol 12 (3) ◽  
pp. 425-441 ◽  
Author(s):  
Dom Miceli ◽  
Jacques Repérant ◽  
Jean-Paul Rio ◽  
Monique Medina

AbstractThe present study examined GABA immunoreactivity within the retinopetal nucleus isthmo-opticus (NIO) of the pigeon centrifugal visual system (CVS) using light- (immunohistofluorescence, peroxidase anti-peroxidase: PAP) and electron- (postembedding GABA immunogold) microscopic techniques. In some double-labeling experiments, the retrograde transport of the fluorescent dye rhodamine β−isothiocyanate (RITC) after its intraocular injection was combined with GABA immunohistofluorescence. GABA-immunoreactive (-ir) somata were demonstrated within the neuropilar zone of the NIO adjacent to the centrifugal cell laminae whereas the centrifugal neurons were always immunonegative. A quantitative ultrastructural analysis was performed which distinguished five categories of axon terminal profiles (P1–5) on the basis of various cytological criteria: type of synaptic contact (symmetrical or asymmetrical); shape, size, and density of synaptic vesicles as well as the immunolabeling (positive or negative), size of profile and appearance of hyaloplasm. Numerous GABA-ir afferents to centrifugal neurons via axon terminal types P2a, P2c, and P3 were observed which comprised 47.1% of the total input. Moreover, the data suggest that some of the P2a terminals, which make up 26.4% of the input, stem from the intrinsic GABA-ir interneurons, whereas the latter receive P1, P3, but also P2 terminal input, indicating that interneurons may contact other interneurons via type P2a axon terminals. The results also suggest that the GABA-ir P3 or the immunonegative P1b and P5 axon terminals are of extrinsic origin arising from cells in the optic tectum whereas the P2c and P4 axon terminals are associated with extra-tectal input to the NIO. The GABAergic innervation of centrifugal neurons within the NIO may be the basis for the demonstrated facilitatory effect of the centrifugal output upon ganglion cell responses. This is relevant to hypotheses regarding CVS involvement in attentional mechanisms through selective enhancement of retinal sensitivity depending on the location of meaningful or novel stimuli.


Sign in / Sign up

Export Citation Format

Share Document