Deformation-dependent peak floor acceleration for the performance-based design of nonstructural elements attached to R/C structures

2021 ◽  
pp. 875529302098801
Author(s):  
Edmond V Muho ◽  
Chao Pian ◽  
Jiang Qian ◽  
Mahdi Shadabfar ◽  
Dimitri E Beskos

This study introduces a simple and efficient method to determine the peak floor acceleration (PFA) at different performance levels for three types of plane reinforced concrete (RC) structures: moment-resisting frames (MRFs), infilled–moment-resisting frames (I-MRFs), and wall-frame dual systems (WFDSs). By associating the structural maximum PFA response with the deformation response, the acceleration-sensitive nonstructural components, and the building contents, can be designed to adhere to the performance-based seismic design of the supporting structure. Thus, the proposed method can accompany displacement-based seismic design methods to design acceleration-sensitive nonstructural elements to comply with the deformation target of the supporting structure. The PFA response shape is represented by line segments defined by key points corresponding to certain floor levels. These key points are defined by explicit empirical expressions developed herein. The maximum PFA response is correlated with the maximum interstory drift ratio (IDR) and other vital characteristics of the supporting structure such as the fundamental period. The proposed expressions are established based on extensive nonlinear dynamic analyses of 19 MRFs, 19 WFDSs, and 19 I-MRFs under 100 far-fault ground motions scaled to capture different deformation targets. Realistic examples demonstrate the efficiency of the proposed method to assess the PFA response at a given IDR, making the method suitable in the framework of performance-based design.

2020 ◽  
Vol 36 (2_suppl) ◽  
pp. 213-237
Author(s):  
Miguel A Jaimes ◽  
Adrián D García-Soto

This study presents an evaluation of floor acceleration demands for the design of rigid and flexible acceleration-sensitive nonstructural components in buildings, calculated using the most recent Mexico City seismic design provisions, released in 2017. This evaluation includes two approaches: (1) a simplified continuous elastic model and (2) using recordings from 10 instrumented buildings located in Mexico City. The study found that peak floor elastic acceleration demands imposed on rigid nonstructural components into buildings situated in Mexico City might reach values of 4.8 and 6.4 times the peak ground acceleration at rock and soft sites, respectively. The peak elastic acceleration demands imposed on flexible nonstructural components in all floors, estimated using floor response spectra, might be four times larger than the maximum acceleration of the floor at the point of support of the component for buildings located in rock and soft soil. Comparison of results from the two approaches with the current seismic design provisions revealed that the peak acceleration demands and floor response spectra computed with the current 2017 Mexico City seismic design provisions are, in general, adequate.


Sign in / Sign up

Export Citation Format

Share Document