Shape of transient creep curves following stress change during steady state creep

Metal Science ◽  
1984 ◽  
Vol 18 (10) ◽  
pp. 485-490 ◽  
Author(s):  
D. O. Northwood ◽  
I. O. Smith
1968 ◽  
Vol 3 (4) ◽  
pp. 288-296 ◽  
Author(s):  
D L Marriott

A method has been proposed which approximates transient creep behaviour by the superposition of elastic and steady-state creep deformation. The present paper discusses the errors incurred by this method. It is shown that they are small. Equations are derived which enable corrections to be calculated with moderate accuracy for an important group of creep theories. Some numerical examples are included for comparison.


2003 ◽  
Vol 18 (8) ◽  
pp. 1771-1776 ◽  
Author(s):  
H. Rhanim ◽  
C. Olagnon ◽  
G. Fantozzi ◽  
A. Azim

The creep behavior of mullite was studied under different stresses and in the temperature range 1200–1450 °C, and an analysis of creep curves was proposed. The study of creep behavior of mullite at high temperatures clearly indicates that this material exhibits concurrent creep and slow crack growth. An effective transition stress exists at each temperature. The analysis takes account of the total creep curve; in particular, the primary and stationary stages. It is now possible to determine by extrapolation the steady-state creep rate for specimens that break in the transient domain during tests. Thus, one can verify the influence of the stress on the steady-state creep rate over a wide stress range. On the other hand, this analysis clearly indicates the existence of two values of the activation energy around 1300 °C; this suggests a change of creep mechanism at this temperature.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Sagar Masuti ◽  
Sylvain Barbot

AbstractThe rheology of the upper mantle impacts a variety of geodynamic processes, including postseismic deformation following great earthquakes and post-glacial rebound. The deformation of upper mantle rocks is controlled by the rheology of olivine, the most abundant upper mantle mineral. The mechanical properties of olivine at steady state are well constrained. However, the physical mechanism underlying transient creep, an evolutionary, hardening phase converging to steady state asymptotically, is still poorly understood. Here, we constrain a constitutive framework that captures transient creep and steady state creep consistently using the mechanical data from laboratory experiments on natural dunites containing at least 94% olivine under both hydrous and anhydrous conditions. The constitutive framework represents a Burgers assembly with a thermally activated nonlinear stress-versus-strain-rate relationship for the dashpots. Work hardening is obtained by the evolution of a state variable that represents internal stress. We determine the flow law parameters for dunites using a Markov chain Monte Carlo method. We find the activation energy $$430\pm 20$$ 430 ± 20   and $$250\pm 10$$ 250 ± 10  kJ/mol for dry and wet conditions, respectively, and the stress exponent $$2.0\pm 0.1$$ 2.0 ± 0.1 for both the dry and wet cases for transient creep, consistently lower than those of steady-state creep, suggesting a separate physical mechanism. For wet dunites in the grain-boundary sliding regime, the grain-size dependence is similar for transient creep and steady-state creep. The lower activation energy of transient creep could be due to a higher jog density of the corresponding soft-slip system. More experimental data are required to estimate the activation volume and water content exponent of transient creep. The constitutive relation used and its associated flow law parameters provide useful constraints for geodynamics applications. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document