Microstructure and mechanical properties of cold metal transfer welded aluminium/dual phase steel

2016 ◽  
Vol 21 (3) ◽  
pp. 194-200 ◽  
Author(s):  
S. Madhavan ◽  
M. Kamaraj ◽  
L. Vijayaraghavan
2012 ◽  
Vol 1381 ◽  
Author(s):  
A.F. Miranda Pérez ◽  
I. Calliari ◽  
K. Brunelli ◽  
F.A. Reyes Valdés ◽  
G. Y Pérez Medina

ABSTRACTEnvironmental, concerns regarding reducing CO2 emissions and the drive of having better fuel economy have already enthused the car manufacturer to use the weight materials having better mechanical properties. Automotive industry has shown a great interest in Dual Phase steels due to the possibility of reducing weight of vehicles and increasing the passenger safety at a very competitive cost. Automotive applications unavoidably entail welding and joining in the manufacturing process and the fatigue resistance of welded joints due to the integrity and safety requirements. The variation of welding parameters (voltage, current and speed of welding) affects weld performance, mechanical, and metallurgical properties.The CMT (Cold Metal Transfer) braze welding is a relatively new technology that partially decouples the arc electrical transients from the filler wire feed rate. It allows reducing the heat required for welding and permits higher joining speeds.The aim of this work is to study the interfacial microstructures and intermetallic compounds produced by cold metal transfer welding of two plates of galvanized DP600 dual phase steel with CuSi3 as filler metal. The study was performed by applying a CMT braze welding with three different joining speeds. The welded microstructures and microhardness were determined and related to the welding process conditions.A small HAZ, constituted by martensite, bainite and coarse ferrite grains, has been highlighted. Furthermore, an intermetallic Fe-Si-Cu compound layer formed at the interface between steel and filler metal. The joining speed sways the size of ZTA since the heat input Q affects the phase transformation in the weld and heat affected zoneThis parameter also affects the thickness of the compound layer and the size of precipitates in the filler metal, likewise the mechanical characteristics. The fracture starts at the interface steel-copper where intermetallic compounds formed.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2525 ◽  
Author(s):  
Qingfeng Yang ◽  
Cunjuan Xia ◽  
Yaqi Deng ◽  
Xianfeng Li ◽  
Haowei Wang

Wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT) has aroused wide public concern in recent years as one of the most advanced technologies for manufacturing components with complex geometries. However, the microstructure and mechanical properties of the parts fabricated by WAAM-CMT technology mostly are intolerable for engineering application and should be improved necessarily. In this study, heat treatment was proposed to optimize the microstructure and enhance mechanical properties in the case of AlSi7Mg0.6 alloy. After heat treatment, the division between coarse grain zone and fine grain zone of as-deposited samples seemed to disappear and the distribution of Si and Mg elements was more uniform. What is more, the yield strength and ultimate tensile strength were improved significantly, while the ductility could be sustained after heat treatment. The improvement of strength is attributed to precipitation strengthening, and the shape change of Si phase. No reduction in ductility is due to the higher work hardening rate caused by nanostructured precipitate. It is proved that heat treatment as an effective method can control the microstructure and enhance comprehensive mechanical properties, which will boost rapid development of WAAM industrial technology.


2019 ◽  
Vol 12 (42) ◽  
pp. 1-8
Author(s):  
Balamurugan S ◽  
Ramamoorthi R ◽  
I.K. Kavin Jeysing ◽  
Kumar S ◽  
I. Mohammed Sharukhan ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Rongcheng Wang ◽  
Yang Zhao ◽  
Qing Chang ◽  
Fengshi Yin ◽  
Xiaoming Wang ◽  
...  

In this paper, the microstructure and mechanical properties of the SG-CuAl8Ni6 Ni-Al bronze straight wall were studied, which was fabricated by the cold metal transfer (CMT) arc additive manufacturing technology. This Ni-Al bronze cladding layer of SG-CuAl8Ni6 is composed mainly of α-Cu, residual β phase, rich Pb phase and κ phase. The microstructure of this multilayer single-channel Ni-Al bronze straight wall circulating presents the overall periodic law, which changes from fine cellular crystals, columnar crystals to dendritic crystals with the increase of the distance from the substrate. The Vickers hardness value of the Ni-Al bronze straight wall decreases with the distance of substrate are between 155 and 185 HV0.5. The microhardness and elastic modulus of the Ni-Al bronze specimen are 1.57 times and 1.99 times higher than these of the brass matrix, respectively. The ultimate tensile strength (UTS) of the straight wall in the welding direction and 45° downward-sloping is greater than that of about 550 MPa in the stacking direction, and the elongation value in the welding direction is the highest. With the increase in interlayer temperature, the grain size increased gradually, and the tensile strength decreases slightly.


Sign in / Sign up

Export Citation Format

Share Document