Microstructure and mechanical properties of heavy section ductile iron castings: experimental and numerical evaluation of effects of cooling rates

2015 ◽  
Vol 28 (6) ◽  
pp. 365-374 ◽  
Author(s):  
L. Ceschini ◽  
Al. Morri ◽  
An. Morri ◽  
E. Salsi ◽  
R. Squatrito ◽  
...  
2011 ◽  
Vol 295-297 ◽  
pp. 1010-1016 ◽  
Author(s):  
Wei Ping Chen ◽  
Zhe Liu ◽  
Yu Deng ◽  
Jie Luo ◽  
Yong Cheng Chen

Ductile iron specimen with dimensions of Φ590mm×800mm were prepared by treating the melt with an yttrium-containing nodulizer. Cooling curves at four locations____the center location, the location 85mm distant from the center, the location 170mm distant from the center and the location 255mm distant from the center of the heavy ductile iron casting Φ590mm×800mm was obtained. The effect of yttrium and magnesium on microstructure and mechanical properties was investigated, and the factors on the distribution of chunky graphite in the specimen were discussed as well. The results show that the largest amount of chunky graphite and the lowest mechanical properties appear at the location 170mm distant from the center. Excessive yttrium and magnesium content at the location 170mm distant from the center is the main factor for the large amount of chunky graphite. The characteristics of the solidification mode____pasty solidification and the considerably long solidification of the casting are the basic reasons for the distribution of chunky graphite of the heavy ductile iron casting Φ590mm×800mm.


2010 ◽  
Vol 457 ◽  
pp. 73-78 ◽  
Author(s):  
Qin Xin Ren ◽  
Ming You ◽  
Yun Bang Yao ◽  
Guang Min Wen ◽  
Qi Zhou Cai

Ductile iron specimens with dimensions of 400mm×400mm ×450mm were prepared by treating the melt with an yttrium-containing nodulizer. The effect of yttrium on microstructure and mechanical properties was investigated, and the formation of degenerate graphite was discussed as well. The results show that the yttrium-containing nodulizer has good nodulization fading resistance for heavy section ductile iron, since the high melting point hexagonal oxide Y2O3 particles were formed from the nodulizer in the melt and those could act as heterogeneous nuclei for graphite nodule for a long time. Segregation of Ti and MgO at grain boundaries broke the austenite shell, resulting in graphite degeneration. When heavy section ductile iron castings with pearlite matrix were cast, graphite nodule size became finer and the nodularity of graphite nodules improved due to the addition of 0.01wt% Sb to the melt, and pearlite content in specimens increased due to alloying with Cu, Cr, Mo. The heavy section ductile iron tool bed was fabricated by treating the melt with the yttrium-containing nodulizer and Ni. The nodularity of the attached block was 85%~90%, tensile strength, elongation and impact toughness were 440MPa, 23.3% and 5.0J/cm2 respectively.


Sign in / Sign up

Export Citation Format

Share Document