scholarly journals Influence of Cu and Ni Alloying on the Microstructure and Mechanical Properties of Austempered Ductile Iron Castings

2019 ◽  
Vol 135 (4) ◽  
pp. 829-833
Author(s):  
M.A. Yalçın ◽  
B. Çetin ◽  
K. Davut
2011 ◽  
Vol 295-297 ◽  
pp. 1010-1016 ◽  
Author(s):  
Wei Ping Chen ◽  
Zhe Liu ◽  
Yu Deng ◽  
Jie Luo ◽  
Yong Cheng Chen

Ductile iron specimen with dimensions of Φ590mm×800mm were prepared by treating the melt with an yttrium-containing nodulizer. Cooling curves at four locations____the center location, the location 85mm distant from the center, the location 170mm distant from the center and the location 255mm distant from the center of the heavy ductile iron casting Φ590mm×800mm was obtained. The effect of yttrium and magnesium on microstructure and mechanical properties was investigated, and the factors on the distribution of chunky graphite in the specimen were discussed as well. The results show that the largest amount of chunky graphite and the lowest mechanical properties appear at the location 170mm distant from the center. Excessive yttrium and magnesium content at the location 170mm distant from the center is the main factor for the large amount of chunky graphite. The characteristics of the solidification mode____pasty solidification and the considerably long solidification of the casting are the basic reasons for the distribution of chunky graphite of the heavy ductile iron casting Φ590mm×800mm.


2014 ◽  
Vol 592-594 ◽  
pp. 192-196
Author(s):  
R. Prem Kumar ◽  
S.S. Mohamed Nazirudeen ◽  
J. Anburaj

Carbidic Austempered Ductile Iron (CADI) is a recent addition to the Austempered Ductile Iron (ADI) family. The effect of chills on the microstructure and mechanical properties of CADI was investigated after Austempering. Three samples of chromium alloyed CADI, the first sample without chill, the second sample with bottom chill and the third sample with bottom and side chills were produced in order to evaluate the effect of chills on its mechanical properties. The samples were austenised for 2 hours at 925° C and then austempered at 325° C for 2 hours in a salt bath furnace. The microstructural features of the as-cast and the austempered CADI samples were analysed using Optical Microscope and Scanning Electron Microscope (SEM). The mechanical properties of the CADI samples (as-cast and austempered) were evaluated for hardness, impact and wear. By austempering at 325° C for 2 hours a typical microstructure of bainite was produced in all the three samples. Hardness and wear resistance of austempered samples produced using bottom and side chills were considerably higher than the corresponding values in samples produced without using any chill and also by using only bottom chill. This enhanced mechanical property in the bottom and side chill sample is attributed to the presence of bainite, carbides and more of uniform fine graphite nodules.


Sign in / Sign up

Export Citation Format

Share Document