Energetic material detonations and related structural material deformation behaviour under high strain rate loading

2006 ◽  
Vol 22 (4) ◽  
pp. 379-380 ◽  
Author(s):  
Ron Armstrong ◽  
John Knott
1985 ◽  
Vol 46 (C5) ◽  
pp. C5-511-C5-516
Author(s):  
A. Kobayashi ◽  
S. Hashimoto ◽  
Li-lih Wang ◽  
M. Toba

2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Ehsan Etemadi ◽  
Jamal Zamani ◽  
Alessandro Francesconi ◽  
Mohammad V. Mousavi ◽  
Cinzia Giacomuzzo

2019 ◽  
Vol 742 ◽  
pp. 532-539 ◽  
Author(s):  
J. Tan ◽  
L. Lu ◽  
H.Y. Li ◽  
X.H. Xiao ◽  
Z. Li ◽  
...  

2014 ◽  
Vol 611-612 ◽  
pp. 167-172 ◽  
Author(s):  
Piotr Skubisz ◽  
Łukasz Lisiecki

Paper presents deformation behaviour and microstructural response of selected medium-carbon high-strength steels commonly used for high-duty components deformed under high-strain-rate and warm work temperature range. The investigation of material behaviour is oriented at analysis of hot and warm workability of material and microstructure evolution resultant from deformation mechanisms, strain induced recrystallization and hardening at temperatures of lower forging regime and high strain rate deformation. The effect of these factors on microstructure after forging and subsequent direct-cooling was studied. Metallographic work aided with numerical methods of simulation of the metal flow and microstructure evolution during forging were used to correlate thermo-mechanical parameters observed with microstructure and mechanical properties after forging and cooling.


Sign in / Sign up

Export Citation Format

Share Document