Phase identification of oxide scale on low carbon steel

2005 ◽  
Vol 22 (3-4) ◽  
pp. 179-184 ◽  
Author(s):  
S. Birosca ◽  
R. L. Higginson
2016 ◽  
Vol 676 ◽  
pp. 385-394 ◽  
Author(s):  
Jae-min Lee ◽  
Wooram Noh ◽  
Deuk-Jung Kim ◽  
Myoung-Gyu Lee

2014 ◽  
Vol 21 (3) ◽  
pp. 335-341 ◽  
Author(s):  
Guang-ming Cao ◽  
Xiao-jiang Liu ◽  
Bin Sun ◽  
Zhen-yu Liu

2012 ◽  
Vol 572 ◽  
pp. 249-254 ◽  
Author(s):  
Xiang Long Yu ◽  
Zheng Yi Jiang ◽  
Dai Jun Yang ◽  
Dong Bin Wei ◽  
Quan Yang

Precipitation behavior of magnetite particles in the thermal grown oxide scale during isothermal cooling of microalloyed low carbon steel was studied using scanning electron microscopy (SEM) and thin film X-ray. The oxide scale was generated from Gleeble 3500 Thermal Mechanical Simulator connected with a humid air generator, to simulate 550 and 450C isothermal treatments. Several types of magnetite precipitates were observed during different cooling processes with respect to the possible mechanisms of precipitation have been discussed. It is found that magnetite particles is as a result of pro-eutectoid precipitation from oxygen-rich wustite, and also as a product of the partial decomposition of wustite during the cooling process due to change of oxygen concentration and migration of iron ions. Furthermore, microalloyed elements in steel reduce the stability of wustite thereby facilitate the precipitation process, whose products of multi-phase oxide finally determine the adhesive strength of oxide scale and steel substrate.


2005 ◽  
Vol 495-497 ◽  
pp. 339-344 ◽  
Author(s):  
Vladimir V. Basabe ◽  
Jerzy A. Szpunar

The textures of oxide scales grown on low carbon steel in air over the temperature range 850-950°C were investigated. The low carbon steel was oxidized with the air velocity of 4.2 cm/s for 10 s in order to approximate the formation of tertiary scales in hot rolling. At 850°C, the wüstite texture and magnetite texture are weak with no dominant components. For the temperatures of 900 and 950°C, the wüstite and magnetite phases have a cube texture {001}<100>. The experimental results indicate that during hot rolling in the g region, the texture of the oxide scale is cubic and when rolling in the a region, the texture of the oxide scale is weak with no dominant components.


Sign in / Sign up

Export Citation Format

Share Document