Clay mineral formation under lateritic weathering conditions

Clay Minerals ◽  
1977 ◽  
Vol 12 (4) ◽  
pp. 281-288 ◽  
Author(s):  
Hermann Harder

AbstractAmorphous hydroxides of Al, Fe, Mn, Mg, Zn, Co, Ni, etc., are capable of coprecipitating SiO2 even from very dilute (weathering) solutions. Silica minerals form only in those precipitates from solutions undersaturated with respect to amorphous silica (100 ppm SiO2 at 20°C). With higher SiO2 concentrations the precipitates remain amorphous. The size of the cations should allow 6-fold coordination and giving a brucite-like layer. Most suitably sized octahedral ions are Mg, Zn, Ni, Co and Fe2+ (size 0·78–0·82 Å), and chemically pure three- and two-layer clay minerals with these ions are easily synthesized. With a relatively high content of silica in solution (60 ppm SiO2 with 1–2·5 ppm metal) several smectite minerals could be synthesized. With a low content of silica in solution (5–20 ppm SiO2 and ca. 2 ppm metal) the serpentine minerals, could be synthesized.It is possible to crystallize the difficult to form Al-clay minerals in a solid solution with these more easily synthesized clay minerals.Clay minerals with the heavy metal ions of Ni, Co, Zn, and with Cu, Cr, etc., can be found in the weathering zone of Gossan and in the lateritic weathering crust of ultrabasic rocks.

Soil Systems ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Maria Nikishina ◽  
Leonid Perelomov ◽  
Yury Atroshchenko ◽  
Evgenia Ivanova ◽  
Loik Mukhtorov ◽  
...  

In real soils the interaction of humic substances with clay minerals often occurs with the participation of metal cations. The adsorption of fulvic acids (FA) solution and their solutions in the presence of heavy metal ions (Pb or Zn) on two clay minerals (kaolinite and bentonite) was investigated by measurement of the optical density changes in the of equilibrium solutions. The FA adsorption by bentonite at the concentrations 0.05–1 g/L proceeds according to the polymolecular mechanism and has a stepwise character. The adsorption of FA on kaolinite can be described by the mechanism of monomolecular adsorption. In three-component systems, including FA, trace element ions and a clay mineral, complex processes occur, including the formation of complexes and salts and their adsorption. The sorption of colored complexes of FA with Pb on the surface of kaolinite and bentonite increases with increasing metal concentrations (0.5–2 mmol/L). The interaction of the FA-Zn2+ compounds with bentonite is a more complicated process—adsorption takes place at the lowest concentration used only. Thus, binding of FA by clay minerals in the presence of metal cations is a complex phenomenon due to the chemical heterogeneity of FA, different properties of metals, characteristics of mineral surfaces and the variability of environmental conditions.


1998 ◽  
Vol 10 (4) ◽  
pp. 1130-1134 ◽  
Author(s):  
Kathleen A. Carrado ◽  
P. Thiyagarajan ◽  
Kang Song ◽  
Randall E. Winans

2017 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
M.B. Nicodemus Ujih ◽  
Mohammad Isa Mohamadin ◽  
Milla-Armila Asli ◽  
Bebe Norlita Mohammed

Heavy metal ions contamination has become more serious which is caused by the releasing of toxic water from industrial area and landfill that are very harmful to all living organism especially human and can even cause death if contaminated in small amount of heavy metal concentration. Currently, peoples are using classic method namely electrochemical treatment, chemical oxidation/reduction, chemical precipitation and reverse osmosis to eliminate the metal ions from toxic water. Unfortunately, these methods are costly and not environmentally friendly as compared to bioadsorption method, where agricultural waste is used as biosorbent to remove heavy metals. Two types of agricultural waste used in this research namely oil palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment, the removal efficiency was found to improve. The removal efficiency is examined based on four specification namely dosage, of biosorbent to adsorb four types of metals ion explicitly nickel, lead, copper, and chromium. The research has found that the removal efficiency of MB was lower than OPMF; whereas, the multiple metals ions removal efficiency decreased in the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.


Sign in / Sign up

Export Citation Format

Share Document