Katophorite from the Jade Mine Tract, Myanmar: mineral description of a rare (grandfathered) endmember of the amphibole supergroup

2015 ◽  
Vol 79 (2) ◽  
pp. 355-363 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
George E. Harlow

AbstractKatophorite has the ideal formula ANaB(NaCa)C(Mg4Al)T(Si7Al)O22W(OH)2 (Hawthorne et al., 2012). No published analyses of amphiboles fall in the katophorite compositional field, except that of Harlow and Olds (1987) for an amphibole from near Hpakan in the Jade Mine Tract, Myanmar. This amphibole was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (vote 2013-140) as katophorite, and is reported here. Holotype katophorite is monoclinic, space group C2/m, a = 9.8573(8), b = 17.9617(15), c = 5.2833(4) Å, β = 104.707(2)°, V = 904.78(13) Å3, Z = 2. The calculated density is 3.091 g cm–3. In plane-polarized light, katophorite is pleochroic, X = pale blue (medium), Y = light blue-green (strongest), Z = colourless; X ∧ a = 30.6° (β obtuse), Y || b, Z ∧ c = 15.8 (β acute). It is biaxial negative, α = 1.638, β = 1.642, γ = 1.644, all ± 0.002; 2Vobs = 73(1)°, 2Vcalc = 70°. The eight strongest lines in the powder X-ray diffraction pattern are [d in Å (I)(hkl)]: 2.700 (100)(151), 3.129 (69)(310), 2.536 (65)(202), 3.378 (61)(131), 8.421 (55)(110), 2.583 (46)(061), 2.942 (43)(221) and 2.334 (41)(351). Electron-microprobe analysis of the refined crystal gave SiO251.74, Al2O37.38, TiO2 0.14, FeO 1.55, Fe2O3 2.82, MgO 18.09, CaO 8.17, Na2O 6.02, K2O 0.24, F 0.06, H2Ocalc. 1.80, Li2Ocalc. 0.09, sum 100.55 wt.% (Li2O and H2O based on the results of single-crystal structure refinement). The formula unit, calculated on the basis of 24 (O,OH,F) with (OH + F + O) = 2 is: A(Na0.85K0.04)Σ=0.89B(Ca1.22Na0.78)Σ=2.00C(Mg3.76Al0.43Fe0.303+Cr0.273+Fe0.182+Li0.05Ti0.014+)Σ=5.00T(Si7.21Al0.79)Σ=8.00O22W[(OH)1.67O0.30F0.03)]Σ=2.00.

2016 ◽  
Vol 80 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
Luigi Chiappino

AbstractMagnesio-ferri-fluoro-hornblende has the ideal formula A□B Ca2C(Mg4Fe3+)T(Si7Al)O22WF2(Hawthorne et al., 2012). The holotype sample described in this work occurs as prismatic crystals in vugs of volcanic rocks (Seruci ignimbrites), found along the coast road ∼5.5 km northeast of Portoscuso, Cagliari, Sardinia; associated minerals are tridymite, todorokite, magnetite, and hematite. The name and the mineral were approved by the IMA CNMNC (2014-091). Holotype magnesio-ferri-fluoro-hornblende is monoclinic, space group C2/m, a = 9.839(5), b = 18.078(9), c = 5.319(3) Å, β = 104.99(3)°, V = 913.9(9) Å3, Z = 2. The density calculated from the empirical formula is 3.315 g cm–3. In plane-polarized light, magnesio-ferri-fluoro-hornblende is pleochroic, X = pale grey (least), Y = dark grey (most), Z = pale brownish grey (intermediate); X^a= 47.6° (β obtuse), Y // b, Z^c= 33.4° (β acute). It is biaxial negative, α = 1.669, β = 1.676, γ = 1.678, all ±0.002; 2Vobs= 74(1)°, 2Vcalc= 56°. The strongest eight lines in the powder X-ray diffraction pattern are [d in Å (I)(hkl)]: 2.711 (100)(151), 8.412 (89)(110), 3.121 (64)(310), 2.553 (61)(2̄02), 3.389 (55)(131), 2.599 (45)(061), 2.164 (36)(261), and 2.738 (34)(3̄31). Electron-microprobe analysis of the refined crystal gave SiO245.34, Al2O36.18, TiO21.22, FeO 15.24, Fe2O36.27, MgO 9.71, MnO 0.78, ZnO 0.06, CaO 10.18, Na2O 1.35, K2O 1.15, F 3.22, Cl 0.30, H2Ocalc 0.37, sum 99.95 wt.%. The empirical formula unit, calculated on the basis of 24 (O, OH, F, Cl) apfu with (OH + F + Cl) = 2 apfu is: (Na0.15K0.22)∑0.37(Na0.25Ca1.66Mn0.09)∑2.00(Mg2.20Fe2+1.94Mn0.01Zn0.01Fe3+0.72Ti0.13)∑5.01(Al1.11Si6.89)∑8.00O22[F1.55(OH)0.37Cl0.08)∑2.00.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 467 ◽  
Author(s):  
Luca Bindi ◽  
John A. Jaszczak

The new mineral richardsite occurs as overgrowths of small (50–400 μm) dark gray, disphenoidal crystals with no evident twinning, but epitaxically oriented on wurtzite–sphalerite crystals from the gem mines near Merelani, Lelatema Mountains, Simanjiro District, Manyara Region, Tanzania. Associated minerals also include graphite, diopside, and Ge,Ga-rich wurtzite. It is brittle, dark gray in color, and has a metallic luster. It appears dark bluish gray in reflected plane-polarized light, and is moderately bireflectant. It is distinctly anisotropic with violet to light-blue rotation tints with crossed polarizers. Reflectance percentages for Rmin and Rmax in air at the respective wavelengths are 23.5, 25.0 (471.1 nm); 27.4, 28.9 (548.3 nm); 28.1, 29.4 (586.6 nm); 27.7, 28.9 (652.3 nm). Richardsite does not show pleochroism, internal reflections, or optical indications of growth zonation. Electron microprobe analyses determine an empirical formula, based on 8 apfu, as (Zn1.975Cu0.995Ga0.995Fe0.025Mn0.010Ge0.005Sn0.005)Σ4.010S3.990, while its simplified formula is (Zn,Cu)2(Cu,Fe,Mn)(Ga,Ge,Sn)S4, and the ideal formula is Zn2CuGaS4. The crystal structure of richardsite was investigated using single-crystal and powder X-ray diffraction. It is tetragonal, with a = 5.3626(2) Å, c = 10.5873(5) Å, V = 304.46(2) Å3, Z = 2, and a calculated density of 4.278 g·cm−3. The four most intense X-ray powder diffraction lines [d in Å (I/I0)] are 3.084 (100); 1.882 (40); 1.989 (20); 1.614 (20). The refined crystal structure (R1 = 0.0284 for 655 reflections) and obtained chemical formula indicate that richardsite is a new member of the stannite group with space group I 4 ¯ 2 m . Its structure consists of a ccp array of sulfur atoms tetrahedrally bonded with metal atoms occupying one-half of the ccp tetrahedral voids. The ordering of the metal atoms leads to a sphalerite(sph)-derivative tetragonal unit-cell, with a ≈ asph and c ≈ 2asph. The packing of S atoms slightly deviates from the ideal, mainly due to the presence of Ga. Using 632.8-nm wavelength laser excitation, the most intense Raman response is a narrow peak at 309 cm−1, with other relatively strong bands at 276, 350, and 366 cm−1, and broader and weaker bands at 172, 676, and 722 cm−1. Richardsite is named in honor of Dr. R. Peter Richards in recognition of his extensive research and writing on topics related to understanding the genesis of the morphology of minerals. Its status as a new mineral and its name have been approved by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association (No. 2019-136).


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2019 ◽  
Vol 83 (4) ◽  
pp. 587-593
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Giancarlo Della Ventura ◽  
Gunnar Färber

AbstractPotassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $. The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $)Σ2.00C(Mg3.85${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $Ni0.01${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ($\bar 2$02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221,$\bar 1$51).


2011 ◽  
Vol 75 (5) ◽  
pp. 2677-2686 ◽  
Author(s):  
L. Bindi ◽  
C. Carbone ◽  
R. Cabella ◽  
G. Lucchetti

AbstractBassoite, ideally SrV3O7·4H2O, is a new mineral from the Molinello manganese mine, Val Graveglia. eastern Liguria, northern Apennines, Italy. It occurs as black euhedral to subhedral grains up to 400 urn across, closely associated with rhodonite, quartz and braunite. Bassoite is opaque with a sub-metallic lustre and a black streak. It is brittle and neither fracture nor cleavage was observed; the Vickers micro-hardness (VHN100) is 150 kg/mm (range 142—165; corresponding to a Mohs hardness of 4—41/2). The calculated density is 2.940 g/cm3 (on the basis of the empirical formula and X-ray single-crystal data). Bassoite is weakly bireflectant and very weakly pleochroic from grey to a dark green. Internal reflections are absent. The mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 18.5%, 19.0% (471.1 nm); 17.2%, 17.8% (548.3 nm); 16.8%, 17.5% (586.6 nm) and 16.2%, 16.8% (652.3 nm), respectively.Bassoite is monoclinic, space group P21/m, with unit-cell parameters: a = 5.313(3) Å, b = 10.495(3) Å, c = 8.568(4) Å, β = 91.14(5)°, V= 477.7(4) Å3, a:b:c = 0.506:1:0.816, and Z = 2. The crystal structure was refined to R1 = 0.0209 for 1148 reflections with Fo > 4σ(Fo) and it consists of layers of VO5 pyramids (with vanadium in the tetravalent state) pointing up and down alternately with Sr between the layers (in nine-fold coordination). The nine most intense X-ray powder-diffraction lines [d in Å (I/I0) (hkt)] are: 8.5663 (100) (001); 6.6363 (14) (011); 3.4399 (14) (1̄21); 3.4049 (17) (121); 2.8339 (15) (1̄22); 2.7949 (11) (122); 2.6550 (15) (200); 2.6237 (11) (040) and 1.8666 (15) (240). Electron microprobe analyses produce a chemical formula (Sr0.97Ca0.02Na0.01)V3.00O74H20, on the basis of 2(Sr+Ca+Na) = 1, taking the results of the structure refinement into account. The presence of water molecules was confirmed by micro-Raman spectroscopy. The name honours Riccardo Basso (b. 1947), full professor of Mineralogy and Crystallography at the University of Genova. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA (2011-028).


1998 ◽  
Vol 54 (6) ◽  
pp. 722-731 ◽  
Author(s):  
F. Reinauer ◽  
R. Glaum

The crystal structure of pentatitanium tetraoxide tetrakis(phosphate), Ti5O4(PO4)4, has been determined and refined from X-ray diffraction single-crystal data [P212121 (No. 19), Z = 4, a = 12.8417 (12), b = 14.4195 (13), c = 7.4622 (9) Å (from Guinier photographs); conventional residual R 1 = 0.042 for 2556 Fo > 4σ(Fo ), R 1 = 0.057 for all 3276 independent reflections; 282 parameters; 29 atoms in the asymmetric unit of the ideal structure]. The structure is closely related to those of β-Fe2O(PO4)-type phosphates and synthetic lipscombite, Fe3(PO4)4(OH). While these consist of infinite chains of face-sharing MO6 octahedra, in pentatitanium tetraoxide tetrakis(phosphate) only five-eighths of the octahedral voids are occupied according to □3Ti5O4(PO4)4. Four of the five independent Ti4+O6 show high radial distortion [1.72 ≤ d(Ti−O) ≤ 2.39 Å] and a typical 1 + 4 + 1 distance distribution. The fifth Ti4+O6 is an almost regular octahedron [1.91 ≤ d(Ti−O) ≤ 1.98 Å]. Partial disorder of Ti4+ over the available octahedral voids is revealed by the X-ray structure refinement. High-resolution transmission electron microscopy (HRTEM) investigations confirm this result.


1988 ◽  
Vol 41 (5) ◽  
pp. 807 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

Evaporation of a methanol solution containing both mer -(PMe2Ph)3Cl3IrIII (1) and mer -(Pme2Ph)3H-trans-Cl2IrIII (2) yields a new crystalline species (3) which is morphologically distinct from either (1) or (2). The structure of (3) has been determined by single-crystal X-ray diffraction analysis. Crystals are monoclinic, space group P21/c, with a 15.747(2), b 10.305(1), c 16.790(2)Ǻ, β 92.75(3)� and Z 4, and contain, in approximately equal amounts, discrete molecules of both (1) and (2) distributed randomly in common lattice sites. Site content differs only according to whether there is H or Cl trans to the unique phosphine ligand . Structure refinement by full-matrix least-squares analysis (6183 reflections, 413 parameters) converged with R = 0.026, Rw = 0.034, and site occupancy factor for the unique chlorine atom equal to 0.530(4). Molecules each exhibit the conformation observed for pure (1) [pure (2) differs]. Derived metal- ligand distances are very similar to the weighted averages [53% (1), 47% (2)] of the corresponding distances in (1) and (2).


2014 ◽  
Vol 78 (7) ◽  
pp. 1629-1645 ◽  
Author(s):  
Anna Garavelli ◽  
Daniela Pinto ◽  
Donatella Mitolo ◽  
Luca Bindi

AbstractLeguernite, ideally Bi12.67O14(SO4)5, is a new mineral found in high-temperature fumarolic assemblages at La Fossa crater, Vulcano, Aeolian Islands, Italy. It occurs as aggregates of needleshaped crystals associated strictly with anglesite, balićžunićite and an unknown Bi sulfate. Leguernite is colourless to white, transparent, non-fluorescent, has a sub-adamantine lustre and a white streak. Electron microprobe data led to the chemical formula (on the basis of 34 anions p.f.u.) (Bi12.40Pb0.15)Σ=12.55S5.08O34. The calculated density is 7.375 g cm–3. A Raman spectrum collected on a single crystal of leguernite confirmed the anhydrous nature of the mineral.Leguernite is monoclinic, space group P2, with a = 11.2486(11), b = 5.6568(6), c = 11.9139(10) Å , β = 99.177(7)º, V = 748.39(12) Å3 and Z = 1. The crystal structure is built up of Bi–O blocks of a fluorite-like structure with Bi12O14 composition separated by a single sulfate ion along [100] and by Bi(SO4)45– groups along [101]. It can also be described as composed of (001) layers with composition [Bi12O14(SO4)6+]n alternating with layers of composition [Bi(SO4)4]n5– along [001]. Leguernite shows significant similarities with the synthetic Bi14O16(SO4)5 compound.The eight strongest reflections in the powder X-ray diffraction data [d in Å (I) (hkl)] are: 3.220 (100) (013), 3.100 (95) (11), 2.83 (30) (020), 2.931 (25) (302), 2.502 (25) (04), 2.035 (20) (322), 1.875 (20) (24) and 5.040 (15) (110).The name is in honour of Franc¸ois “Fanfan” Le Guern (1942–2011), who was a very active volcanologist and specialist in volcanic gases and sublimates. Both the mineral and the mineral name have been approved by the IMA-CNMNC (2013–051).


2009 ◽  
Vol 73 (5) ◽  
pp. 817-824 ◽  
Author(s):  
R. Oberti ◽  
F. Cámaraite ◽  
F. C. Hawthorne ◽  
N. A. Ball

AbstractFluoro-aluminoleakeite, ideally , is a new mineral of the amphibole group from Norra Kärr, Sweden (IMA-CNMMNC 2009-012). It occurs in a proterozoic alkaline intrusion that mainly comprises a fine-grained schistose agpaitic nepheline-syenite (grennaite). Fluoro- aluminoleakeite occurs as isolated prismatic crystals 0.10–2 mm long in a syenitic matrix. Crystals are light greenish-blue with a greenish-blue streak. It is brittle, has a Mohs hardness of 6 and a splintery fracture; it is non-fluorescent with perfect {110} cleavage, no observable parting, and has a calculated density of 3.14 g cm–3. In plane-polarized light, it is pleochroic, X = pale green, Y = dark green, Z = pale green; X ^ a = 62.9° (in β obtuse), Y || b. Fluoro-aluminoleakeite is biaxial negative, α = 1.632(1), β = 1.638(1), γ = 1.643(1); 2Vobs. = 98.0(4)°, 2Vcalc. = 95.5°.MFluoro-aluminoleakeite is monoclinic, space group C2/m, a = 9.7043(5) Å, b = 17.7341(8) Å, c = 5.2833(3) Å, β = 104.067(4)°, V = 882.0(2) Å3, Z = 2. The eight strongest X-ray diffraction lines in the powder-diffraction pattern are [d in Å, (I), (hkl)]: 2.687, (100), (31, 151); 4.435, (80), (021, 040); 3.377, (80), (131); 2.527, (60), (02); 8.342, (50), (110); 3.096, (40), (310); 2.259, (40), (71, 12) and 2.557, (30), (002, 061). Analysis, by a combination of electron microprobe and crystal-structure refinement, gives SiO2 58.61, Al2O3 7.06, TiO2 0.32, FeO 3.27, Fe2O3 6.05, MgO 8.61, MnO 0.73, ZnO 0.43, CaO 0.05, Na2O 9.90, K2O 2.43, Li2O 1.62, F 3.37, H2Ocalc. 0.50, sum 101.08 wt.%. The formula unit, calculated on the basis of 24 (O,OH,F,Cl) p.f.u. with (OH) + F = 2 a.p.f.u., is A(Na0.65 O22W(F1.47OH0.53)Σ=2.00. Crystal-structure analysis shows CLi to be completely ordered at the M(3) site, and provided reliable site populations. Fluoro-aluminoleakeite is related to the end-member leakeite, , by the substitutions CFe3+ → CAl and WF → W(OH).


Sign in / Sign up

Export Citation Format

Share Document