Meis1-mediated apoptosis is caspase dependent and can be suppressed by coexpression of HoxA9 in murine and human cell lines

Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1222-1230 ◽  
Author(s):  
Peter J. Wermuth ◽  
Arthur M. Buchberg

AbstractCoexpression of the homeodomain protein Meis1 and either HoxA7 or HoxA9 is characteristic of many acute myelogenous leukemias. Although Meis1 can be overexpressed in bone marrow long-term repopulating cells, it is incapable of mediating their transformation. Although overexpressing HoxA9 alone transforms murine bone marrow cells, concurrent Meis1 overexpression greatly accelerates oncogenesis. Meis1-HoxA9 cooperation suppresses several myeloid differentiation pathways. We now report that Meis1 overexpression strongly induces apoptosis in a variety of cell types in vitro through a caspase-dependent process. Meis1 requires a functional homeodomain and Pbx-interaction motif to induce apoptosis. Coexpressing HoxA9 with Meis1 suppresses this apoptosis and provides protection from several apoptosis inducers. Pbx1, another Meis1 cofactor, also induces apoptosis; however, coexpressing HoxA9 is incapable of rescuing Pbx-mediated apoptosis. This resistance to apoptotic stimuli, coupled with the previously reported ability to suppress multiple myeloid differentiation pathways, would provide a strong selective advantage to Meis1-HoxA9 coexpressing cells in vivo, leading to leukemogenesis.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4194-4194
Author(s):  
Tobias Berg ◽  
Michael Heuser ◽  
Florian Kuchenbauer ◽  
Gyeongsin Park ◽  
Stephen Fung ◽  
...  

Abstract Abstract 4194 Cytogenetically normal acute myeloid leukemia (CN-AML) patients with high BAALC or MN1 expression have a poor prognosis. Whereas the oncogenic function of MN1 is well established, the functional role of BAALC in hematopoiesis is not known. We therefore compared the expression of BAALC and MN1 in 140 CN-AML patients by quantitative PCR. To further assess the impact of BAALC on leukemogenesis we used retroviral gene transfer into primary murine bone marrow cells and cells immortalized with NUP98-HOXD13 (ND13) and HOXA9. Transduced cells were assessed in vitro by colony forming assays and for their sensitivity to treatment with all-trans retinoic acid (ATRA). They were also evaluated by in vivo transplantation into lethally-irradiated mice. In the 140 CN-AML patients analyzed, the expression of BAALC and MN1 was highly correlated (R=0.71). Retroviral overexpression of MN1 or BAALC in the Hox gene-immortalized bone marrow cells did not cause upregulation of the other gene, suggesting that these genes do not regulate each other. In murine bone marrow cells BAALC did not immortalize the cells in vitro as assessed by serial replating of transduced cells in methylcellulose assays. Transplantation of transduced cells resulted in negligible engraftment of approximately 1 percent at 4 weeks after transplantation. However, co-transduction of BAALC into NUP98-HOXD13 cells (which are very sensitive to the treatment with all-trans retinoic acid) increased the 50 percent inhibitory concentration (IC50) of ATRA by 4.3-fold, suggesting a negative impact of BAALC on myeloid differentiation. We next evaluated whether the differentiation inhibiting effects of BAALC may cooperate with the self renewal-promoting effects of HOXA9 to induce leukemia in mice. Mice receiving transplants of murine bone marrow cells transduced with BAALC and HOXA9 developed myeloid leukemias with a median latency of 139.5 days that were characterized by leukocytosis, massively enlarged spleens (up to 1.02 g), anemia and thrombocytopenia. Infiltrations of myeloid cells were also found in liver, spleen, and kidney. The disease was transplantable into secondary animals. By Southern blot analysis we found one to two BAALC viral integrations per mouse, suggesting that clonal disease had developed from BAALC-transduced cells. We demonstrate for the first time that BAALC blocks myeloid differentiation and promotes leukemogenesis when combined with the self-renewal promoting oncogene HOXA9. Due to its prognostic and functional effects BAALC may become a valuable therapeutic target in leukemia patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3580-3591
Author(s):  
N Falla ◽  
Vlasselaer Van ◽  
J Bierkens ◽  
B Borremans ◽  
G Schoeters ◽  
...  

In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.


Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1298-1306 ◽  
Author(s):  
Fernando Anjos-Afonso ◽  
Dominique Bonnet

Abstract It is believed that a primitive cell type that maintains the mesenchymal compartment exists in the bone marrow. However, this putative mesenchymal stem/progenitor cell is yet to be identified and isolated. We are reporting the identification, isolation, and detailed characterization of the most primitive mesenchymal progenitor cells in the adult murine bone marrow, based on the expression of stage-specific embryonic antigen–1 (SSEA-1). This primitive subset can be identified in mesenchymal cell cultures and also directly in the bone marrow, thus ascertaining for the first time their existence in an adult organism. Characterization of SSEA-1+ mesenchymal cells revealed that upon purification these cells gave rise to SSEA-1− mesenchymal cells, whereas the reverse could not be observed. Also, these SSEA-1+ cells have a much higher capacity to differentiate than their negative counterparts, not only to several mesenchymal cell types but also to unconventional cell types such as astrocyte-, endothelial-, and hepatocyte-like cells in vitro. Most importantly, a single-cell–derived population was capable of differentiating abundantly into different mesenchymal cell types in vivo. Altogether we are proposing a hierarchical organization of the mesenchymal compartment, placing SSEA-1+ cells at the apex of this hierarchy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1758-1758
Author(s):  
Axel Schambach ◽  
Bernhard Schiedlmeier ◽  
Jens Bohne ◽  
Dorothee von Laer ◽  
Geoff Margison ◽  
...  

Abstract T20 is a 36-amino-acid peptide that binds to HIV-1 gp41 and thereby acts as a fusion inhibitor, thus mediating potent and selective inhibition of HIV-1 entry in vitro and in vivo. An extended peptide expressed as an artificial, membrane-bound molecule (mbC46) efficiently inhibits HIV infection of primary human T-cells following retroviral vector mediated gene transfer (Egelhofer et al., J Virol, 2004). To develop an even more stringent approach to HIV gene therapy, we targeted hematopoietic stem cells. In 3 experimental groups of C57BL/6 mice (9 animals/group), we investigated the long-term toxicity of murine bone marrow cells transduced with M87o, a therapeutic vector designed to coexpress mbC46 and an HIV-derived RNA RRE-decoy to inhibit HIV replication. As controls we used the same vector containing an inactive C46 peptide and mock-transduced cells. Blood samples were collected monthly. Donor chimerism and transgene expression in multiple lineages were determined by FACS analysis and transgene integration was measured by real time PCR. Six months after transplantation, 4 mice per group were sacrificed and the remaining 5 mice per group were observed for another 6 months. In addition to the parameters mentioned above, we performed complete histopathology, blood counts and clinical biochemistry. Donor chimerism in all groups ranged from 82 – 94% (day 190 and day 349). In the M87o group, 60% of donor cells expressed mbC46. FACS data showed persisting transgene expression in T-cells (CD4, CD8, 65%), B-cells (B220, 46%), myeloid cells (CD11b, 68%), platelets (CD41, 19%), and RBC (60%) of the peripheral blood and bone marrow cells. Highly sustained gene marking (2–4 copies/genome) was noticed on day 190. To reveal latent malignant clones potentially originating from side effects of the genetic manipulation, 1x106 bone marrow cells from 4 primary recipients were transplanted into lethally irradiated secondary recipients (3 recipients/primary mouse) and these mice were observed for 8 months. All together, we could not observe any evidence for leukemogenic capacity. Analysis of peripheral blood and bone marrow showed a similar transgene expression pattern compared to the primary mice. To generate a complete chimerism of transgenic cells, we chose the human drug resistance gene methylguanine-methyltransferase (MGMT, P140K) to select for mbC46-transduced stem cells in vitro and in vivo. Different coexpression strategies were tested. Function of the MGMT protein was confirmed in a quantitative alkyltransferase assay and in a cytotoxicity assay using BCNU or temozolomide. In vitro selection of transduced 32D and PM1 cells with benzylguanine and BCNU showed >95% positive cells with evidence of polyclonal survival. Transduced PM1 cells underwent an HIV challenge assay. In vivo experiments in a murine bone marrow transplantation setting are ongoing to determine the potency and safety of combined retroviral expression of mbC46 and MGMT in relevant preclinical models. Successful conclusion of these studies will hopefully result in a phase I clinical trial testing the concept of generating an HIV-resistant autologous hematopoiesis.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1339-1345 ◽  
Author(s):  
Jennifer L. Rocnik ◽  
Rachel Okabe ◽  
Jin-Chen Yu ◽  
Benjamin H. Lee ◽  
Neill Giese ◽  
...  

Abstract Acquired mutations in the FLT3 receptor tyrosine kinase are common in acute myeloid leukemia and result in constitutive activation. The most frequent mechanism of activation is disruption of the juxtamembrane autoregulatory domain by internal tandem duplications (ITDs). FLT3-ITDs confer factor-independent growth to hematopoietic cells and induce a myeloproliferative syndrome in murine bone marrow transplant models. We and others have observed that FLT3-ITD activates STAT5 and its downstream effectors, whereas ligand-stimulated wild-type FLT3 (FLT3WT) does not. In vitro mapping of tyrosine phosphorylation sites in FLT3-ITD identified 2 candidate STAT5 docking sites within the juxtamembrane domain that are disrupted by the ITD. Tyrosine to phenylalanine substitution of residues 589 and 591 in the context of the FLT3-ITD did not affect tyrosine kinase activity, but abrogated STAT5 activation. Furthermore, FLT3-ITD–Y589/591F was incapable of inducing a myeloproliferative phenotype when transduced into primary murine bone marrow cells, whereas FLT3-ITD induced myeloproliferative disease with a median latency of 50 days. Thus, the conformational change in the FLT3 juxtamembrane domain induced by the ITD activates the kinase through dysregulation of autoinhibition and results in qualitative differences in signal transduction through STAT5 that are essential for the transforming potential of FLT3-ITD in vivo.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3797-3797
Author(s):  
Angeliki Thanasopoulou ◽  
Alexandar Tzankov ◽  
Juerg Schwaller

Abstract The NUP98-NSD1 fusion protein, product of the t(5;11)(q35;p15.5) chromosomal translocation, is an AML-associated cytogenetically silent genetic aberration, recently identified as the most frequent fusion in pediatric AML, generally associated with aggressive disease and poor prognosis. Interestingly, the vast majority (>70%) of the reported NUP98-NSD1-positive cases also carried an activating FLT3-ITD mutation suggesting functional cooperation. The purpose of this study was to search for experimental evidence of a functional cooperation between NUP98-NSD1 and FLT3-ITD in the transformation of murine hematopoietic cells in vitro and in vivo. Lineage surface marker-depleted murine bone marrow cells were transduced with either pMSCV-NUP98-NSD1-neo or pMSCV-FLT3-ITD-GFP or both expression constructs on fibronectin-coated plates. Serial colony formation assays in myeloid favoring medium and immunophenotypic analysis by flow cytometry indicated that retroviral expression of NUP98-NSD1 provided increased self-renewal capacity and impaired differentiation of murine bone marrow stem and progenitor cells. NUP98–NSD1 expressing cells displayed a typical myeloblastic morphology and co-expressed myeloid and early stem cell surface markers (CD34low/c-kit+/FcgR+/Gr-1+/ Mac-I+/B220-). Co-expression of FLT3-ITD resulted in high rates of cell proliferation, showed a more differentiated phenotype and concomitantly impaired the in vitro clonogenic capacity in methylcellulose cultures. Bone marrow cells expressing NUP98-NSD1 with or without FLT3-ITD were harvested from methylcellulose cultures and transplanted into sub-lethally irradiated syngeneic mice. All mice receiving cells co-expressing NUP98-NSD1 and FLT3-ITD developed AML that was transplantable into all secondary recipients. Myeloid leukemic blasts that co-expressed NUP98-NSD1 and FLT3-ITD were present in abundance both in BM preparations and in blood smears, and histopathological analysis showed widespread infiltration into solid organs. By contrast, no AML ever developed in mice receiving cells expressing only NUP98-NSD1. These mice, similar to mice receiving cells expressing FLT3-ITD only, developed signs of a chronic myeloproliferative disorder, characterized by expansion of Mac-1+/Gr-1+ BM cells with granulocytic/monocytic differentiation that in some cases caused severe distress after a latency period of more than one year. Intriguingly, upon injection with double transduced NUP98-NSD1 and FLT3-ITD progenitors rather different latency periods of the AML development were observed between different experiments. Interestingly, the latency periods could be correlated to the ratio of expression levels of FLT3-ITD to wildtype FLT3, with higher FLT3-ITD levels associated with a shorter latency. To further investigate the significance of aberrant FLT3 signaling, in vitro and in vivo transformed NUP98-NSD1 and NUP98-NSD1/FLT3-ITD cells were treated with a selective FLT3 tyrosine kinase inhibitor (PKC412). The higher sensitivity of cells co-expressing NUP98-NSD1 and FLT3-ITD to PKC412, compared to cells expressing NUP98-NSD1 only, indicated that proliferation and survival were dependent on FLT3-derived signals. Taken together, these observations demonstrate a potent cooperation between NUP98-NSD1 fusion and FLT3-ITD in leukemic transformation. However, neither the NUP98-NSD1 fusion protein nor the FLT3-ITD mutation alone was sufficient to induce AML. Moreover, the high sensitivity of NUP98-NSD1 and FLT3-ITD co-expressing leukemic blasts to FLT3 signaling inhibition suggests a possible therapeutic strategy to be further explored in this AML subgroup. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3580-3591 ◽  
Author(s):  
N Falla ◽  
Vlasselaer Van ◽  
J Bierkens ◽  
B Borremans ◽  
G Schoeters ◽  
...  

Abstract In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.


1987 ◽  
Vol 166 (1) ◽  
pp. 210-218 ◽  
Author(s):  
D A Williams ◽  
K Hsieh ◽  
A DeSilva ◽  
R C Mulligan

To develop a highly efficient means for generating methotrexate resistant (MTXr) hematopoietic cells in vivo, a recombinant retroviral genome was constructed that encodes a MTXr dihydrofolate reductase (DHFRr). Cell lines producing high titers of virus capable of transmitting the DHFR gene were generated and used to infect mammalian cells in vitro. Analysis of infected fibroblasts indicated that the DHFRr gene was transmitted intact and conferred a high level of MTXr upon cells. Based on these findings, DHFRr-containing virus was used to infect murine bone marrow cells in vitro. Following infection, the transduced cells were introduced into lethally irradiated recipients via bone marrow transplantation techniques. The presence of the proviral sequences in cells of the spleen and bone marrow of engrafted recipients was associated with significantly increased survival of mice treated with otherwise lethal doses of MTX.


2017 ◽  
Vol 56 ◽  
pp. 64-68 ◽  
Author(s):  
Terence A. McGonigle ◽  
Amy R. Dwyer ◽  
Eloise L. Greenland ◽  
Naomi M. Scott ◽  
Kevin N. Keane ◽  
...  

1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


Sign in / Sign up

Export Citation Format

Share Document