scholarly journals Central role of PI3K in transcriptional activation of hTERT in HTLV-I–infected cells

Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2946-2955 ◽  
Author(s):  
Marcia Bellon ◽  
Christophe Nicot

Abstract The persistence of human T-cell leukemia/lymphoma virus-I (HTLV-I)–infected cells is dependent upon clonal expansion and up-regulation of telomerase (hTERT). We have previously found that in interleukin (IL)–2–independent transformed HTLV-I cells, Tax strongly activates the hTERT promoter through nuclear factor-κB (NF-κB)–mediated Sp1 and c-Myc activation. In IL-2–dependent cells and adult T-cell leukemia/lymphoma (ATLL) patient samples, however, Tax expression is very low to undetectable, yet these cells retain strong telomerase activity. This suggests the existence of compensatory mechanisms in IL-2–dependent cells and ATLL patients. In this study, we demonstrate that telomerase activity is significantly decreased upon IL-2 withdrawal in immortalized HTLV-I cell lines. Inhibition of PI3K or AKT signaling pathways reduced telomerase activity in HTLV-I cells. We found that IL-2/IL-2R signaling was associated with a PI3K-dependent/AKT-independent transcriptional up-regulation of the endogenous hTERT promoter. We found that activation of the PI3K pathway mediated cytoplasmic retention of the Wilms tumor (WTI) protein, which strongly suppressed the hTERT promoter. The importance of this regulatory pathway for telomerase expression is underscored by findings that the PI3K pathway is commonly found activated in cancer cells.

Virology ◽  
1997 ◽  
Vol 229 (2) ◽  
pp. 400-414 ◽  
Author(s):  
Ferenc D. Tóth ◽  
George Aboagye-Mathiesen ◽  
József Nemes ◽  
Xiangdong Liu ◽  
István Andirkó ◽  
...  

2019 ◽  
Vol 93 (16) ◽  
Author(s):  
Guangyong Ma ◽  
Jun-ichirou Yasunaga ◽  
Koichi Ohshima ◽  
Tadashi Matsumoto ◽  
Masao Matsuoka

ABSTRACTHuman T-cell leukemia virus type 1 (HTLV-1) infection causes T-cell leukemia and inflammatory diseases, most notably including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The underlying mechanism for the pathogenesis of HAM/TSP remains unclear. According to a recent clinical trial, a humanized antibody that targets CCR4+cells ameliorates inflammation by reducing the number of infected cells in the central nervous system; this result suggests that the transmigration of HTLV-1-infected cells plays a crucial role in HAM/TSP. Partly due to the blood-brain barrier, current treatments for HAM/TSP are mostly palliative. Pentosan polysulfate (PPS), a semisynthetic glycosaminoglycan, has recently been used to treat HAM/TSP and was found to alleviate the symptoms. In this study, we investigated the effect of PPS on HTLV-1-infected cells and provide evidence for its efficacy in HAM/TSP. PPS was cytotoxic to certain HTLV-1-infected cells and significantly suppressed HTLV-1 virion production. PPS also efficiently inhibited HTLV-1 cell-cell transmission in T cells. In addition, PPS blocked HTLV-1 infection of primary endothelial cells (human umbilical vascular endothelial cells) and suppressed the subsequent induction of proinflammatory cytokine expression. Furthermore, PPS was found to inhibit the adhesion and transmigration of HTLV-1-infected cells. We also confirmed the anti-HTLV-1 effect of PPSin vivousing two mouse models. PPS blocked HTLV-1 infection in a mouse model with peripheral blood mononuclear cell (PBMC)-humanized NOD-scid IL2Rgammanull(huPBMC NSG) mice. PPS was also found to suppress the development of dermatitis and lung damage in HTLV-1 bZIP factor (HBZ)-transgenic (HBZ-Tg) mice, an HTLV-1 transgenic mouse model in which the mice develop systemic inflammation.IMPORTANCEHTLV-1 is the first human retrovirus to have been identified and is endemic in certain areas worldwide. HTLV-1 infection leads to the development of an inflammatory disease called HAM/TSP, a myelopathy characterized by slowly progressive spastic paraparesis. There have been no effective therapeutics available for HAM/TSP, but recently, a semisynthetic glycosaminoglycan, named pentosan polysulfate (PPS), has been found to alleviate the symptoms of HAM/TSP. Here we conducted a comprehensive study on the effect of PPS bothin vitroandin vivo. PPS demonstrated anti-HTLV-1 potential in infected cell lines, as shown by its suppressive effects on HTLV-1 replication and transmission and on the transmigration of infected T cells. Moreover, results obtained from two HTLV-1 mouse models demonstrate that PPS inhibits HTLV-1 infection and inflammation developmentin vivo. Our work offers insights into the treatment of HAM/TSP by PPS and also suggests its possible use for treating other HTLV-1-induced inflammatory diseases.


2004 ◽  
Vol 78 (8) ◽  
pp. 3827-3836 ◽  
Author(s):  
Machiko Nomura ◽  
Takashi Ohashi ◽  
Keiko Nishikawa ◽  
Hironori Nishitsuji ◽  
Kiyoshi Kurihara ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Although the viral transactivation factor, Tax, has been known to have apparent transforming ability, the exact function of Tax in ATL development is still not clear. To understand the role of Tax in ATL development, we introduced short-interfering RNAs (siRNAs) against Tax in a rat HTLV-1-infected T-cell line. Our results demonstrated that expression of siRNA targeting Tax successfully downregulated Tax expression. Repression of Tax expression was associated with resistance of the HTLV-1-infected T cells to Tax-specific cytotoxic-T-lymphocyte killing. This may be due to the direct effect of decreased Tax expression, because the Tax siRNA did not alter the expression of MHC-I, CD80, or CD86. Furthermore, T cells with Tax downregulation appeared to lose the ability to develop tumors in T-cell-deficient nude rats, in which the parental HTLV-1-infected cells induce ATL-like lymphoproliferative disease. These results indicated the importance of Tax both for activating host immune response against the virus and for maintaining the growth ability of infected cells in vivo. Our results provide insights into the mechanisms how the host immune system can survey and inhibit the growth of HTLV-1-infected cells during the long latent period before the onset of ATL.


2006 ◽  
Vol 80 (21) ◽  
pp. 10683-10691 ◽  
Author(s):  
Paola Miyazato ◽  
Jun-ichirou Yasunaga ◽  
Yuko Taniguchi ◽  
Yoshio Koyanagi ◽  
Hiroaki Mitsuya ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, a disease that is triggered after a long latency period. HTLV-1 is known to spread through cell-to-cell contact. In an attempt to study the events in early stages of HTLV-1 infection, we inoculated uninfected human peripheral blood mononuclear cells and the HTLV-1-producing cell line MT-2 into NOD-SCID, common γ-chain knockout mice (human PBMC-NOG mice). HTLV-1 infection was confirmed with the detection of proviral DNA in recovered samples. Both CD4+ and CD8+ T cells were found to harbor the provirus, although the latter population harbored provirus to a lesser extent. Proviral loads increased with time, and inverse PCR analysis revealed the oligoclonal proliferation of infected cells. Although tax gene transcription was suppressed in human PBMC-NOG mice, it increased after in vitro culture. This is similar to the phenotype of HTLV-1-infected cells isolated from HTLV-1 carriers. Furthermore, the reverse transcriptase inhibitors azidothymidine and tenofovir blocked primary infection in human PBMC-NOG mice. However, when tenofovir was administered 1 week after infection, the proviral loads did not differ from those of untreated mice, indicating that after initial infection, clonal proliferation of infected cells was predominant over de novo infection of previously uninfected cells. In this study, we demonstrated that the human PBMC-NOG mouse model should be a useful tool in studying the early stages of primary HTLV-1 infection.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1012-1016 ◽  
Author(s):  
Y Furukawa ◽  
J Fujisawa ◽  
M Osame ◽  
M Toita ◽  
S Sonoda ◽  
...  

Human T-cell leukemia virus type 1 (HTLV-1) integrates its proviruses into random sites in host chromosomal DNA. Random integration of the proviruses was observed in asymptomatic HTLV-1 carriers and patients with HTLV-1-associated myelopathy (HAM/TSP). However, clonal integration has been reported in patients with adult T-cell leukemia (ATL), including that in the smoldering, chronic, and acute states, indicating clonal expansion of infected cells. In this study, we found that about 20% of HAM/TSP patients and their seropositive family members harbored subpopulation(s) of clonally proliferated cells infected with HTLV-1, although they still maintained randomly infected cells as a major population. These clones were stable during examination periods of 4 months to 3 years. However, these carriers or HAM/TSP patients did not show any significant indication of ATL. This extremely high frequency of clonal expansion of HTLV-1-infected cells indicates that some clones of HTLV-1-infected cells have a tendency to proliferate more efficiently than the other population without malignant transformation.


2021 ◽  
Vol 118 (10) ◽  
pp. e2005568118
Author(s):  
Yunlong He ◽  
Nagesh Pasupala ◽  
Huijun Zhi ◽  
Batsuhk Dorjbal ◽  
Imran Hussain ◽  
...  

Constitutive NF-κB activation (NF-κBCA) confers survival and proliferation advantages to cancer cells and frequently occurs in T/B cell malignancies including adult T cell leukemia (ATL) caused by human T-cell leukemia virus type 1 (HTLV-1). Counterintuitively, NF-κBCA by the HTLV-1 transactivator/oncoprotein Tax induces a senescence response, and HTLV-1 infections in culture mostly result in senescence or cell-cycle arrest due to NF-κBCA. How NF-κBCA induces senescence, and how ATL cells maintain NF-κBCA and avert senescence, remain unclear. Here we report that NF-κBCA by Tax increases R-loop accumulation and DNA double-strand breaks, leading to senescence. R-loop reduction via RNase H1 overexpression, and short hairpin RNA silencing of two transcription-coupled nucleotide excision repair (TC-NER) endonucleases that are critical for R-loop excision—Xeroderma pigmentosum F (XPF) and XPG—attenuate Tax senescence, enabling HTLV-1–infected cells to proliferate. Our data indicate that ATL cells are often deficient in XPF, XPG, or both and are hypersensitive to ultraviolet irradiation. This TC-NER deficiency is found in all ATL types. Finally, ATL cells accumulate R-loops in abundance. Thus, TC-NER deficits are positively selected during HTLV-1 infection because they facilitate the outgrowth of infected cells initially and aid the proliferation of ATL cells with NF-κBCA later. We suggest that TC-NER deficits and excess R-loop accumulation represent specific vulnerabilities that may be targeted for ATL treatment.


Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2523-2531 ◽  
Author(s):  
Uma Sinha-Datta ◽  
Izumi Horikawa ◽  
Eriko Michishita ◽  
Abhik Datta ◽  
Janitzia C. Sigler-Nicot ◽  
...  

Abstract In immortal cells, the existence of a mechanism for the maintenance of telomere length is critical. In most cases this is achieved by the reactivation of telomerase, a cellular reverse transcriptase that prevents telomere shortening. Here we report that the telomerase gene (hTERT) promoter is up-regulated during transmission of human T-cell lymphotropic virus type-I (HTLV-I) to primary T cells in vitro and in ex vivo adult T-cell leukemia/lymphoma (ATLL) samples, but not asymptomatic carriers. Although Tax impaired induction of human telomerase reverse transcriptase (hTERT) mRNA in response to mitogenic stimulation, transduction of Tax into primary lymphocytes was sufficient to activate and maintain telomerase expression and telomere length when cultured in the absence of any exogenous stimulation. Transient transfection assays revealed that Tax stimulates the hTERT promoter through the nuclear factor κB (NF-κB) pathway. Consistently, Tax mutants inactive for NF-κB activation could not activate the hTERT or sustain telomere length in transduced primary lymphocytes. Analysis of the hTERT promoter occupancy in vivo using chromatin immunoprecipitation assays suggested that an increased binding of c-Myc and Sp1 is involved in the NF-κB–mediated activation of the hTERT promoter. This study establishes the role of Tax in regulation of telomerase expression, which may cooperate with other functions of Tax to promote HTLV-I–associated adult T-cell leukemia.


Sign in / Sign up

Export Citation Format

Share Document