scholarly journals BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells

Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3185-3195 ◽  
Author(s):  
Mirle Schemionek ◽  
Christian Elling ◽  
Ulrich Steidl ◽  
Nicole Bäumer ◽  
Ashley Hamilton ◽  
...  

Abstract In a previously developed inducible transgenic mouse model of chronic myeloid leukemia, we now demonstrate that the disease is transplantable using BCR-ABL+ Lin−Sca-1+c-kit+ (LSK) cells. Interestingly, the phenotype is more severe when unfractionated bone marrow cells are transplanted, yet neither progenitor cells (Lin−Sca-1−c-kit+), nor mature granulocytes (CD11b+Gr-1+), nor potential stem cell niche cells (CD45−Ter119−) are able to transmit the disease or alter the phenotype. The phenotype is largely independent of BCR-ABL priming before transplantation. However, prolonged BCR-ABL expression abrogates the potential of LSK cells to induce full-blown disease in secondary recipients and increases the fraction of multipotent progenitor cells at the expense of long-term hematopoietic stem cells (LT-HSCs) in the bone marrow. BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development, probably contributing to the reduced LT-HSC frequency within BCR-ABL+ LSK cells. Reversion of BCR-ABL, or treatment with imatinib, eradicates mature cells, whereas leukemic stem cells persist, giving rise to relapsed chronic myeloid leukemia on reinduction of BCR-ABL, or imatinib withdrawal. Our results suggest that BCR-ABL induces differentiation of LT-HSCs and decreases their self-renewal capacity.

Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 801-807 ◽  
Author(s):  
T Leemhuis ◽  
D Leibowitz ◽  
G Cox ◽  
R Silver ◽  
EF Srour ◽  
...  

Chronic myeloid leukemia (CML) is a malignant disorder of the hematopoietic stem cell. It has been shown that normal stem cells coexist with malignant stem cells in the bone marrow of patients with chronic-phase CML. To characterize the primitive hematopoietic progenitor cells within CML marrow, CD34+DR- and CD34+DR+ cells were isolated using centrifugal elutriation, monoclonal antibody labeling, and flow cytometric cell sorting. Polymerase chain reaction analysis of RNA samples from these CD34+ subpopulations was used to detect the presence of the BCR/ABL translocation characteristic of CML. The CD34+DR+ subpopulation contained BCR/ABL(+) cells in 11 of 12 marrow samples studied, whereas the CD34+DR- subpopulation contained BCR/ABL(+) cells in 6 of 9 CML marrow specimens. These cell populations were assayed for hematopoietic progenitor cells, and individual hematopoietic colonies were analyzed by PCR for their BCR/ABL status. Results from six patients showed that nearly half of the myeloid colonies cloned from CD34+DR- cells were BCR/ABL(+), although the CD34+DR- subpopulation contained significantly fewer BCR/ABL(+) progenitor cells than either low-density bone marrow (LDBM) or the CD34+DR+ fraction. These CD34+ cells were also used to establish stromal cell-free long-term bone marrow cultures to assess the BCR/ABL status of hematopoietic stem cells within these CML marrow populations. After 28 days in culture, three of five cultures initiated with CD34+DR- cells produced BCR/ABL(-) cells. By contrast, only one of eight cultures initiated with CD34+DR+ cells were BCR/ABL(-) after 28 days. These results indicate that the CD34+DR- subpopulation of CML marrow still contains leukemic progenitor cells, although to a lesser extent than either LDBM or CD34+DR+ cells.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 74-83 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient “compromised” bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 801-807 ◽  
Author(s):  
T Leemhuis ◽  
D Leibowitz ◽  
G Cox ◽  
R Silver ◽  
EF Srour ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a malignant disorder of the hematopoietic stem cell. It has been shown that normal stem cells coexist with malignant stem cells in the bone marrow of patients with chronic-phase CML. To characterize the primitive hematopoietic progenitor cells within CML marrow, CD34+DR- and CD34+DR+ cells were isolated using centrifugal elutriation, monoclonal antibody labeling, and flow cytometric cell sorting. Polymerase chain reaction analysis of RNA samples from these CD34+ subpopulations was used to detect the presence of the BCR/ABL translocation characteristic of CML. The CD34+DR+ subpopulation contained BCR/ABL(+) cells in 11 of 12 marrow samples studied, whereas the CD34+DR- subpopulation contained BCR/ABL(+) cells in 6 of 9 CML marrow specimens. These cell populations were assayed for hematopoietic progenitor cells, and individual hematopoietic colonies were analyzed by PCR for their BCR/ABL status. Results from six patients showed that nearly half of the myeloid colonies cloned from CD34+DR- cells were BCR/ABL(+), although the CD34+DR- subpopulation contained significantly fewer BCR/ABL(+) progenitor cells than either low-density bone marrow (LDBM) or the CD34+DR+ fraction. These CD34+ cells were also used to establish stromal cell-free long-term bone marrow cultures to assess the BCR/ABL status of hematopoietic stem cells within these CML marrow populations. After 28 days in culture, three of five cultures initiated with CD34+DR- cells produced BCR/ABL(-) cells. By contrast, only one of eight cultures initiated with CD34+DR+ cells were BCR/ABL(-) after 28 days. These results indicate that the CD34+DR- subpopulation of CML marrow still contains leukemic progenitor cells, although to a lesser extent than either LDBM or CD34+DR+ cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1783-1783
Author(s):  
Mariela Sivina ◽  
Takeshi Yamada ◽  
Natalie Dang ◽  
H. Daniel Lacorazza

Abstract Bone marrow suppression is an important cause of death in patients exposed to radiation or in cancer patients treated with conventional chemotherapeutic agents. Myeloablative treatments (i.e. 5-fluorouracil administration) lead to apoptosis of blood forming cells and to regression of blood vessels in bone marrow. It is well known that hematological recovery post-bone marrow insult depends on the capacity of hematopoietic stem cells to regenerate the entire hematopoietic system, however, the transcriptional machinery involved in the regeneration of sinusoidal blood vessels in bone marrow from endothelial progenitor cells is largely unknown. Endothelial cells express the Tie2 receptor tyrosine kinase (a.k.a. Tek), which is involved in the angiogenic remodeling and vessel stabilization. Gene targeting of Tie2 showed that it is not required for differentiation and proliferation of definitive hematopoietic lineages in the embryo although Tie2 is needed during postnatal bone marrow hematopoiesis. ELF is a subgroup of the ETS family of transcription factors composed by ELF1, ELF2 (a.k.a. NERF), ELF3, ELF4 (a.k.a. MEF) and ELF5. ELF1 and ELF2 have been shown to regulate Tie2 expression in vitro. Recently we showed that ELF4 modulates the exit of hematopoietic stem cells (HSC) from quiescence (Lacorazza et al., Cancer Cell2006, 9:175–187). Given the high homology between ELF1 and ELF4 and the same origin of HSC and endothelial progenitor cells, we hypothesize that ELF4 regulates proliferation and Tie2 expression of endothelial cells. We used a luciferase gene reporter system in COS-7 and HEK cells to examine the capacity of ELF proteins to activate Tie2. ELF4 is the strongest activator of Tie2 expression following the hierarchy ELF4>ELF1>ELF2 variant 1>ELF2 variant 2. Site directed mutagenesis of each of the five ETS-binding sites (EBS) present in the Tie2 promoter shows that ELF4 binds preferentially to EBS 1, 3 and 5. Binding of ELF4 to the Tie2 promoter was confirmed by chromatin immunoprecipitation and EMSA. Although Elf1 gene expression is essentially normal in Elf4−/− bone marrow cells collected after 5-FU treatment, we detected diminished Tie2 expression compared to Elf4+/+ bone marrow cells. The association of this effect to human endothelial cells derived from umbilical cord (HUVEC cells) was investigated. All-trans retinoic acid (ATRA) and vascular-endothelial growth factor (VEGF) induced ELF4 expression in HUVEC cells in a dose and time dependent manner which was followed by increased Tie2 expression, suggesting that expression of ELF4 is modulated by angiogenic signals. Moreover, endothelial cells treated with ATRA showed rapid wound colonization in a wound assay. Expression of the pan-endothelial marker MECA-32 was determined by immunohistochemistry to correlate Tie2 with the regeneration of blood vessels: myeloablated Elf4−/− femurs exhibited a reduction of MECA-32 positive arterioles. Finally, temporal and spatial expression of Tie2 during hematological recovery post ablation was measured in bone marrow using transgenic Tie2-LacZ mice crossed to Elf4−/− mice. Collectively, our data suggests that ELF4 regulates Tie2 expression in endothelial cells but most importantly their proliferative capacity in response to angiogenic signals.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Mo A. Dao ◽  
Jesusa Arevalo ◽  
Jan A. Nolta

Abstract The cell surface protein CD34 is frequently used as a marker for positive selection of human hematopoietic stem/progenitor cells in research and in transplantation. However, populations of reconstituting human and murine stem cells that lack cell surface CD34 protein have been identified. In the current studies, we demonstrate that CD34 expression is reversible on human hematopoietic stem/progenitor cells. We identified and functionally characterized a population of human CD45+/CD34− cells that was recovered from the bone marrow of immunodeficient beige/nude/xid (bnx) mice 8 to 12 months after transplantation of highly purified human bone marrow–derived CD34+/CD38− stem/progenitor cells. The human CD45+ cells were devoid of CD34 protein and mRNA when isolated from the mice. However, significantly higher numbers of human colony-forming units and long-term culture-initiating cells per engrafted human CD45+ cell were recovered from the marrow of bnx mice than from the marrow of human stem cell–engrafted nonobese diabetic/severe combined immunodeficient mice, where 24% of the human graft maintained CD34 expression. In addition to their capacity for extensive in vitro generative capacity, the human CD45+/CD34− cells recovered from thebnx bone marrow were determined to have secondary reconstitution capacity and to produce CD34+ progeny following retransplantation. These studies demonstrate that the human CD34+ population can act as a reservoir for generation of CD34− cells. In the current studies we demonstrate that human CD34+/CD38− cells can generate CD45+/CD34− progeny in a long-term xenograft model and that those CD45+/CD34− cells can regenerate CD34+ progeny following secondary transplantation. Therefore, expression of CD34 can be reversible on reconstituting human hematopoietic stem cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3271-3271
Author(s):  
Claudia R. Ball ◽  
Manfred Schmidt ◽  
Ingo H. Pilz ◽  
Fessler Sylvia ◽  
David A. Williams ◽  
...  

Abstract Gene therapy is a promising approach for the therapy of hereditary diseases, but after the occurrence of adverse side effects in a SCID-X1 gene therapy trial increased biological safety has become a major goal of gene therapy. A reduction of the number of transplanted cells could help achieve this goal by reducing the statistical likelihood of insertional mutagenesis simply by simply reducing the number of transplanted cells carrying potentially untoward insertion sites. As we have previously shown, incorporation of the selectable marker gene MGMT P140K into a retroviral vector allows a reduced intensity and toxicity in vivo selection of low numbers of genetically modified hematopoietic cells by chemotherapy with O6-benzylguanine (O6BG) and nitrosourea drugs such as 1,3-bis-2 chloroethyl-1-nitrosourea (BCNU). However, it is still not known whether extended selection over longer periods of time influences the long-term proliferation and differentiation capacity of murine haematopoietic stem cells. To address this question, serial transplantations of murine MGMT-P140K-expressing hematopoiesis combined with repeated administrations of O6-BG and BCNU were performed. After ex vivo gene transfer of a MGMT/IRES/eGFP-encoding retroviral vector, bone marrow cells were transplanted into syngeneic C57 BL/6J mice and serially transplanted. First, 2nd and 3rd generation recipient mice were subsequently treated every four weeks in order to amplify treatment effects on the long-term clonal behaviour of modified hematopoietic stem cells. Lineage contribution of transduced hematopoiesis was monitored by FACS over a total of 17 rounds of selection and clonality was monitored by LAM-PCR over a total of 16 rounds of selection. In primary mice, the percentage of transduced blood cells increased from 4.7 ± 0.8 % to 36.4 ± 9.8 % (n=12) and in secondary mice from 29.9 ± 7.2 % to 65.1 ± 8.7 % (n=18) after selection without inducing persistent peripheral blood cytopenia. Lineage analysis showed an unchanged multilineage differentiation potential in the transduced compared to control cells in 1st and 2nd generation animals. LAM PCR analysis of peripheral blood revealed stable oligo- to polyclonal hematopoiesis in 1st, 2nd and 3rd generation mice. Evidence of predominant clones or clonal exhaustion was not observed despite of up to 16 rounds of BCNU/O6-BG treatment. Interestingly, pairs of secondary transplanted mice which had received bone marrow cells from identical donors showed very similar clonal composition, engraftment kinetics under selection and lineage contribution of the transduced hematopoiesis. This is molecular proof that extensive self-renewal of transplantable stem cells had occurred in the primary mice resulting in a net symmetric refilling of the stem cell compartment. In summary, we demonstrate that even extended selection of MGMT-P140K-expressing hematopoietic stem cells by repetitive chemotherapy does not affect differentiation or proliferation potential and does not result in clonal exhaustion. Our results have important implications for the clinical use of MGMT selection strategies intending to employ amplification of a limited number of genetically modified clones in clinical gene therapy.


1992 ◽  
Vol 175 (1) ◽  
pp. 175-184 ◽  
Author(s):  
N Uchida ◽  
I L Weissman

Hematopoietic stem cells (HSCs) are defined in mice by three activities: they must rescue lethally irradiated mice (radioprotection), they must self-renew, and they must restore all blood cell lineages permanently. We initially demonstrated that HSCs were contained in a rare (approximately 0.05%) subset of bone marrow cells with the following surface marker profile: Thy-1.1lo Lin- Sca-1+. These cells were capable of long-term, multi-lineage reconstitution and radioprotection of lethally irradiated mice with an enrichment that mirrors their representation in bone marrow, namely, 1,000-2,000-fold. However, the experiments reported did not exclude the possibility that stem cell activity may also reside in populations that are Thy-1.1-, Sca-1-, or Lin+. In this article stem cell activity was determined by measuring: (a) radioprotection provided by sorted cells; (b) long-term, multi-lineage reconstitution of these surviving mice; and (c) long-term, multi-lineage reconstitution by donor cells when radioprotection is provided by coinjection of congenic host bone marrow cells. Here we demonstrate that HSC activity was detected in Thy-1.1+, Sca-1+, and Lin- fractions, but not Thy-1.1-, Sca-1-, or Lin+ bone marrow cells. We conclude that Thy-1.1lo Lin- Sca-1+ cells comprise the only adult C57BL/Ka-Thy-1.1 mouse bone marrow subset that contains pluripotent HSCs.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4057-4067 ◽  
Author(s):  
TD Randall ◽  
FE Lund ◽  
MC Howard ◽  
IL Weissman

Using a monoclonal antibody to murine CD38, we showed that a population of adult bone marrow cells that expressed the markers Sca-1 and c-kit but lacked the lineage markers Mac-1, GR-1, B220, IgM, CD3, CD4, CD8 and CD5 could be subdivided by the expression of CD38. We showed that CD38high c-kit+ Sca-1+, linlow/-cells sorted from adult bone marrow cultured with interleukin-3 (IL-3), IL-6, and kit-L produced much larger colonies in liquid culture at a greater frequency than their CD38low/- counterparts. In addition, we found that CD36low/ - cells contained most of the day-12 colony-forming units-spleen (CFU-S) but were not long-term reconstituting cells, whereas the population that expressed higher levels of CD38 contained few, but significant, day-12 CFU-S and virtually all the long-term reconstituting stem cells. Interestingly, the CD38high Sca-1+ c-kit+ linlow/- cells isolated from day-E14.5 fetal liver were also found to be long-term reconstituting stem cells. This is in striking contrast to human hematopoietic progenitors in which the most primitive hematopoietic cells from fetal tissues lack the expression of CD38. Furthermore, because antibodies to CD38 could functionally replace antibodies to Thy-1.1 in a stem cell purification procedure, the use of anti-CD38 may be more generally applicable to the purification of hematopoietic stem cells from mouse strains that do not express the Thy-1.1 allele.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 883-883 ◽  
Author(s):  
Jean-Claude Chomel ◽  
Marie Laure Bonnet ◽  
Nathalie Sorel ◽  
Angelina Bertrand ◽  
Marie Claude Meunier ◽  
...  

Abstract Abstract 883 Currently Imatinib Mesylate (IM) represent the first line therapy for chronic myeloid leukemia (CML). Recent data suggest that despite unprecedented rates of complete cytogenetic responses (CCR) and major molecular responses (MMR) obtained, leukemic stem cells (LSC) persist in the majority of patients (pts). LSC have been shown to be resistant to in vitro treatments with tyrosine kinase inhibitors (TKI). Consequently, discontinuation of IM in pts with undetectable molecular residual leukemia (UMRL) attested by RQ-PCR, leads to molecular relapses in the majority of the cases. Although the persistence of CD34+ CD38- leukemic stem cells has been demonstrated in pts with complete cytogenetic remission (CCR), the persistence of BCR-ABL+ leukemic stem cells in UMRL pts with has not been studied so far. For this purpose, we have performed an extensive analysis of bone-marrow-derived clonogenic and primitive hematopoietic stem cells in 6 pts with RQ-PCR constantly negative in their blood samples. Concerning the treatments; 5 out of 6 pts were off therapy, 3 pts (UPN1, 2, 3) had been treated with interferon-a only (IFN) for 6–13 years and their therapy was discontinued for 11, 16 and 8 years, respectively and 2 pts (UPN4 and 5) had been treated successively with IFN and IM and their IM therapy was discontinued for 2 years. One patient (UPN6) had been treated with IM followed by dasatinib and was on dasatinib at the time of the study. UPN7 was previously treated with first IFN then IM (which induced a stable UMRL) and then she switched to dasatinib because of side effect with IM. Bone marrow cells were collected and CD34+ cells purified using immunomagnetic columns. After performing a clonogenic assay, CD34+ cells were used in long-term culture initiating cell (LTC-IC) assays with weekly half medium changes. At week+5, clonogenic assays were performed and LTC-IC-derived clonogenic cells activity was calculated. For each patient 20 individual and 20 pools of 10 clonogenic cells and 20 individual and 20 pools of 10 LTC-IC derived CFU-C were plucked in order to obtain information in at least 220 CFU-C. After RNA extraction, BCR-ABL was quantified by RQ-PCR and in each positive CFU-C a nested PCR was performed to confirm the results. In one patient (UPN7) a NOD/SCID mouse assay was performed. All 3 pts treated with IFN alone, had BCR-ABL+ clonogenic cells varying from 0.5% (UPN1, 2) to 45 % (UPN3). All 3 had LTC-IC derived CFU-C positive for BCR-ABL (UPN1: 20%; UPN2 5%; UPN3 3%). In two pts previously treated with IFN and IM, clonogenic CFU-C BCR-ABL positivity was 10% and 5% whereas LTC-IC-derived CFU-C was 5% in UPN4) and undetected on UPN5. In UPN6 treated with IM then dasatinib, 5% of CFU-C was BCR-ABL+ whereas 100% of LTC-IC derived CFU-C was positive. The analysis of SCID-NOD assays performed in CD34+ cells from patient UPN7 is ongoing. Overall, these data show, for the first time to our knowledge, that in pts in IFN and IFN/IM-induced long-term remissions, there is persistent clonogenic BCR-ABL+ output maintained by BCR-ABL-expressing stem cells in the absence of relapse. In the only patient with successively treated with IM and dasatinib, 100 % of primitive hematopoietic stem cells are BCR-ABL+, despite PCR-negativity in peripheral blood, suggesting their possible quiescence in vivo and highlighting a theoretical risk of relapse. It remains to be determined if in pts with TKI-induced remissions, the analysis of stem cell compartments could be of use for clinical decisions to discontinue therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3194-3194
Author(s):  
George L. Chen ◽  
Kotung Chang ◽  
Xiaosong Huang ◽  
Gerald J. Spangrude ◽  
Josef T. Prchal

Abstract Murine hematopoietic stem cells (HSC) transfected with a gain-of-function human erythropoietic receptor (EPOR) transgene were reported to have a competitive advantage over wild type mouse hematopoietic stem cells in a bone marrow transplantation (BMT) model (Kirby, Blood95(12): 3710, 2000). However, EPOR transgenes may not be normally expressed in early progenitor/stem cells. Moreover, whether Epo/EpoR signaling plays a role in hematopoietic stem cell engraftment is unknown. Our lab previously created mouse models harboring the wild type human EPOR (wthEPOR) or the mutant human gain-of-function EPOR (mthEPOR) gene knocked into the mouse EPOR locus (Divoky, PNAS 98(3): 986, 2001). This animal model has augmented Epo signaling in all tissues that express EpoR, thus the wthEPOR mice are anemic while the mthEPOR mice are polycythemic. We compared the relative engraftment efficiency of mthEPOR vs. wthEPOR HSCs in a competitive bone marrow transplantation (BMT) assay using C57/Bl6 congenic mice. Bone marrow from wthEPOR (CD45.1) and mthEPOR (CD45.2) mice were co-transplanted (1:1) into lethally irradiated (137Cs > 11Gy split) normal recipients (CD45.1/CD45.2). At 7 months after transplantation, peripheral blood chimerism demonstrated skewing towards wthEPOR rather than mthEPOR origin in the granulocyte, macrophage, T cell, and B cell compartments (Data Table). Bone marrow chimerism paralleled peripheral blood chimerism (not shown). Examination of the stem cell compartment by Hoechst 33342 staining demonstrated similar skewing towards wthEPOR origin (Data Table). Because unequal numbers of HSC may result in skewed chimerism, we examined the relative proportions of HSC to total bone marrow cells. In wthEPOR mice, the Flt3− Rh123low subset of cKit+Sca1+ cells (KLS-FS) cells represented 0.011±0.003% of total bone marrow cells while in mthEPOR mice these cells represented 0.023±0.006% of total bone marrow cells (p=0.025). Since equal numbers of wthEPOR and mthEPOR total bone marrow cells were co-transplanted, relatively fewer wthEPOR HSC than mthEPOR HSC were transferred. Taken with the above chimerism data showing skewing towards wthEPOR, these results suggest that wthEPOR HSCs have a significant engraftment advantage over mthEPOR HSCs. Furthermore, enhanced Epo/EpoR signaling may interfere with the long term repopulation of hematopoietic progenitors. Hematopoietic stem cells undergo self renewal or differentiation/proliferation; in the presence of erythropoietin, a cytokine with proliferative and differentiating properties, it may be that self renewal is suppressed leading ultimately to the observed skewed chimerism. These data suggest that erythropoietin administration to patients during and immediately after marrow transplantation may be detrimental and should be used judiciously. Peripheral Blood and Marrow Chimerism Compartment wthEPOR (CD45.1) mthEPOR (CD45.2) Endogenous control (CD45.1/CD45.2) All p values for wthEPOR vs mthEPOR < 0.01 Neutrophil (blood) 72.7% 18.8% 8.5% Macrophage (blood) 76.8% 14.7% 8.5% T cell (blood) 78.6% 9.3% 12.2% B cell (blood) 72.8% 17.7% 9.5% HSC (marrow) 66% 15.1% 18.9%


Sign in / Sign up

Export Citation Format

Share Document