scholarly journals Identification of BCR/ABL-negative primitive hematopoietic progenitor cells within chronic myeloid leukemia marrow

Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 801-807 ◽  
Author(s):  
T Leemhuis ◽  
D Leibowitz ◽  
G Cox ◽  
R Silver ◽  
EF Srour ◽  
...  

Chronic myeloid leukemia (CML) is a malignant disorder of the hematopoietic stem cell. It has been shown that normal stem cells coexist with malignant stem cells in the bone marrow of patients with chronic-phase CML. To characterize the primitive hematopoietic progenitor cells within CML marrow, CD34+DR- and CD34+DR+ cells were isolated using centrifugal elutriation, monoclonal antibody labeling, and flow cytometric cell sorting. Polymerase chain reaction analysis of RNA samples from these CD34+ subpopulations was used to detect the presence of the BCR/ABL translocation characteristic of CML. The CD34+DR+ subpopulation contained BCR/ABL(+) cells in 11 of 12 marrow samples studied, whereas the CD34+DR- subpopulation contained BCR/ABL(+) cells in 6 of 9 CML marrow specimens. These cell populations were assayed for hematopoietic progenitor cells, and individual hematopoietic colonies were analyzed by PCR for their BCR/ABL status. Results from six patients showed that nearly half of the myeloid colonies cloned from CD34+DR- cells were BCR/ABL(+), although the CD34+DR- subpopulation contained significantly fewer BCR/ABL(+) progenitor cells than either low-density bone marrow (LDBM) or the CD34+DR+ fraction. These CD34+ cells were also used to establish stromal cell-free long-term bone marrow cultures to assess the BCR/ABL status of hematopoietic stem cells within these CML marrow populations. After 28 days in culture, three of five cultures initiated with CD34+DR- cells produced BCR/ABL(-) cells. By contrast, only one of eight cultures initiated with CD34+DR+ cells were BCR/ABL(-) after 28 days. These results indicate that the CD34+DR- subpopulation of CML marrow still contains leukemic progenitor cells, although to a lesser extent than either LDBM or CD34+DR+ cells.

Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 801-807 ◽  
Author(s):  
T Leemhuis ◽  
D Leibowitz ◽  
G Cox ◽  
R Silver ◽  
EF Srour ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a malignant disorder of the hematopoietic stem cell. It has been shown that normal stem cells coexist with malignant stem cells in the bone marrow of patients with chronic-phase CML. To characterize the primitive hematopoietic progenitor cells within CML marrow, CD34+DR- and CD34+DR+ cells were isolated using centrifugal elutriation, monoclonal antibody labeling, and flow cytometric cell sorting. Polymerase chain reaction analysis of RNA samples from these CD34+ subpopulations was used to detect the presence of the BCR/ABL translocation characteristic of CML. The CD34+DR+ subpopulation contained BCR/ABL(+) cells in 11 of 12 marrow samples studied, whereas the CD34+DR- subpopulation contained BCR/ABL(+) cells in 6 of 9 CML marrow specimens. These cell populations were assayed for hematopoietic progenitor cells, and individual hematopoietic colonies were analyzed by PCR for their BCR/ABL status. Results from six patients showed that nearly half of the myeloid colonies cloned from CD34+DR- cells were BCR/ABL(+), although the CD34+DR- subpopulation contained significantly fewer BCR/ABL(+) progenitor cells than either low-density bone marrow (LDBM) or the CD34+DR+ fraction. These CD34+ cells were also used to establish stromal cell-free long-term bone marrow cultures to assess the BCR/ABL status of hematopoietic stem cells within these CML marrow populations. After 28 days in culture, three of five cultures initiated with CD34+DR- cells produced BCR/ABL(-) cells. By contrast, only one of eight cultures initiated with CD34+DR+ cells were BCR/ABL(-) after 28 days. These results indicate that the CD34+DR- subpopulation of CML marrow still contains leukemic progenitor cells, although to a lesser extent than either LDBM or CD34+DR+ cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1234-1234
Author(s):  
Robert S Welner ◽  
Giovanni Amabile ◽  
Deepak Bararia ◽  
Philipp B. Staber ◽  
Akos G. Czibere ◽  
...  

Abstract Abstract 1234 Specialized bone marrow (BM) microenvironment niches are essential for hematopoietic stem and progenitor cell maintenance, and recent publications have focused on the leukemic stem cells interaction and placement within those sites. Surprisingly, little is known about how the integrity of this leukemic niche changes the normal stem and progenitor cells behavior and functionality. To address this issue, we started by studying the kinetics and differentiation of normal hematopoietic stem and progenitor cells in mice with Chronic Myeloid Leukemia (CML). CML accounts for ∼15% of all adult leukemias and is characterized by the BCR-ABL t(9;22) translocation. Therefore, we used a novel SCL-tTA BCR/ABL inducible mouse model of CML-chronic phase to investigate these issues. To this end, BM from leukemic and normal mice were mixed and co-transplanted into hosts. Although normal hematopoiesis was increasingly suppressed during the disease progression, the leukemic microenvironment imposed distinct effects on hematopoietic progenitor cells predisposing them toward the myeloid lineage. Indeed, normal hematopoietic progenitor cells from this leukemic environment demonstrated accelerated proliferation with a lack of lymphoid potential, similar to that of the companion leukemic population. Meanwhile, the leukemic-exposed normal hematopoietic stem cells were kept in a more quiescent state, but remained functional on transplantation with only modest changes in both engraftment and homing. Further analysis of the microenvironment identified several cytokines that were found to be dysregulated in the leukemia and potentially responsible for these bystander responses. We investigated a few of these cytokines and found IL-6 to play a crucial role in the perturbation of normal stem and progenitor cells observed in the leukemic environment. Interestingly, mice treated with anti-IL-6 monoclonal antibody reduced both the myeloid bias and proliferation defects of normal stem and progenitor cells. Results obtained with this mouse model were similarly validated using specimens obtained from CML patients. Co-culture of primary CML patient samples and GFP labeled human CD34+CD38- adult stem cells resulted in selective proliferation of the normal primitive progenitors compared to mixed cultures containing unlabeled normal bone marrow. Proliferation was blocked by adding anti-IL-6 neutralizing antibody to these co-cultures. Therefore, our current study provides definitive support and an underlying crucial mechanism for the hematopoietic perturbation of normal stem and progenitor cells during leukemogenesis. We believe our study to have important implications for cancer prevention and novel therapeutic approach for leukemia patients. We conclude that changes in cytokine levels and in particular those of IL-6 in the CML microenvironment are responsible for altered differentiation and functionality of normal stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3185-3195 ◽  
Author(s):  
Mirle Schemionek ◽  
Christian Elling ◽  
Ulrich Steidl ◽  
Nicole Bäumer ◽  
Ashley Hamilton ◽  
...  

Abstract In a previously developed inducible transgenic mouse model of chronic myeloid leukemia, we now demonstrate that the disease is transplantable using BCR-ABL+ Lin−Sca-1+c-kit+ (LSK) cells. Interestingly, the phenotype is more severe when unfractionated bone marrow cells are transplanted, yet neither progenitor cells (Lin−Sca-1−c-kit+), nor mature granulocytes (CD11b+Gr-1+), nor potential stem cell niche cells (CD45−Ter119−) are able to transmit the disease or alter the phenotype. The phenotype is largely independent of BCR-ABL priming before transplantation. However, prolonged BCR-ABL expression abrogates the potential of LSK cells to induce full-blown disease in secondary recipients and increases the fraction of multipotent progenitor cells at the expense of long-term hematopoietic stem cells (LT-HSCs) in the bone marrow. BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development, probably contributing to the reduced LT-HSC frequency within BCR-ABL+ LSK cells. Reversion of BCR-ABL, or treatment with imatinib, eradicates mature cells, whereas leukemic stem cells persist, giving rise to relapsed chronic myeloid leukemia on reinduction of BCR-ABL, or imatinib withdrawal. Our results suggest that BCR-ABL induces differentiation of LT-HSCs and decreases their self-renewal capacity.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1499-1499
Author(s):  
Pratibha Singh ◽  
Jonathan Hoggatt ◽  
Jennifer M. Speth ◽  
Louis M. Pelus

Abstract Abstract 1499 Poster Board I-522 Dendritic cells (DCs) are an attractive target for therapeutic manipulation of the immune system due to their potent antigen presentation capacity and ability to induce effective immune response. In steady-state conditions different DC subsets including myeloid DCs (CD11c+CD11b+B220neg) and plasmacytoid DCs (CD11c+CD11bnegB220+) are generated in bone-marrow (BM) from hematopoietic stem cells through a series of differentiation steps. We recently demonstrated that prostaglandin (PGE2), the predominant metabolite of arachidonic acid metabolism by cyclooxygenase (COX) enzymes, enhances the homing, survival and proliferation of hematopoietic stem cells (Hoggatt et. al., Blood 2009). In this study, we examined the requirement of prostaglandins in development of DCs from hematopoietic progenitor cells. In vivo treatment of mice for 4 days with the non-steroidal anti-inflammatory drug (NSAID) indomethacin (2.5 mg/kg/bid), a dual COX1/COX2 inhibitor, produced a 59.5±17.8 % (p<0.02) reduction in total bone-marrow DC number compared to control mice treated with vehicle alone. Interestingly, indomethacin selectively decreased marrow CD11c+CD11b+B220neg myeloid DCs without affecting CD11c+CD11bnegB220+ plasmacytoid DCs. To determine whether fewer DCs in the bone marrow of indomethacin treated mice was due to the impairment of DC differentiation from their hematopoietic progenitor cells, we stimulated differentiation of DCs from lineage depleted (CD5−,CD45R−, CD11b−, Anti-Gr-1−, 7-4− and Ter-119−) bone marrow cells using Flt-3 ligand for 9 days in vitro and treated cultures with indomethacin (1 microM), SC-560 (10 microM), a selective COX-1 inhibitor or NS-398 (10 microM), a selective COX-2 inhibitor. Indomethacin produced a 1.98±0.38 fold, (p<0.02) reduction and the COX-2 inhibitor NS-398 produced a 1.52±0.04 fold, (p<0.05) reduction in CD11c+CD11b+B220neg myeloid DC generation compared to control, while the COX-1 specific inhibitor SC-560 was without effect. As expected, Flt-3-ligand induced plasmacytoid DC (CD11c+CD11bnegB220+) differentiation was not affected by selective COX inhibitors. Indomethacin also impaired generation of CD11a+CD14neg Langerhans DC from human umbilical cord blood CD34+ cells. Measurement of PGE2 production in culture supernatants from DC-producing cultures demonstrated detectable PGE2 after 6 days of culture and DC generation from BM progenitors in these cultures was impaired when PGE2 synthesis was blocked on day 6 by indomethacin administration. Indomethacin treatment during the first 5 days of Flt3-ligand stimulated DC differentiation cultures did not decrease DC production. To identify mechanisms responsible for this impairment in Flt-3 ligand-induced DC generation from hematopoietic progenitor cells, we analyzed the effect of indomethacin on DC-committed precursor cell proliferation and survival. Survival of DC-committed precursors defined as CD11clow CD11bbrightMHCIIlow was reduced 35±2.5% (p<0.05) in indomethacin treated cultures compared to control. However, indomethacin did not affect DC precursor proliferation as measured by BrdU incorporation assay. To elucidate the signaling mechanisms by which indomethacin impaired the survival of DC precursors, we added selective receptor agonists to each of known PGE receptors, EP1-4, during Flt3-ligand induced DC differentiation. The EP1/EP3 agonist 17-phenyl trinor PGE2 rescued the DC precursors from indomethacin mediated death, whereas Butaprost, a specific EP2 agonist and L902688, a selective EP4 agonist, failed to rescue DC precursor death. DCs developed in the presence of prostaglandin inhibitors did not show any defect in LPS-induced activation and expressed CD40, CD80, CD86 and MHCII levels similar to control as measured by flow cytometry. In addition, DC developed in the absence of endogenous PGE2 production successfully induced T-cell activation as measured by mix lymphocyte reaction assay (MLR). In conclusion, COX-2 mediated prostaglandin production by DC-committed hematopoietic precursors confers resistance to cell death via signaling through EP1/EP3 receptors and promotes dendritic cell development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1789-1789
Author(s):  
Chun Shik Park ◽  
Ye Shen ◽  
Takeshi Yamada ◽  
Koramit Suppipat ◽  
Monica Puppi ◽  
...  

Abstract Tyrosine kinase inhibitors (TKIs) are the standard treatment for eradicating BCR-ABL-positive progenitor cells in chronic myeloid leukemia (CML); however, disease often relapses upon drug discontinuation because TKIs do not effectively eliminate leukemic stem cells (LSC). The development of novel strategies aimed at eradicating LSC without harming normal hematopoietic stem cells (HSC) is essential for the cure of CML patients. The generation of LSC-directed therapy relies on the identification of novel molecular pathways that selectively regulate LSC function independent of BCR-ABL. The Krüppel-like factor 4(KLF4) is a transcription factor that can either activate or repress gene transcription acting as an oncogene or a tumor suppressor depending on the cellular context. Analysis of a published dataset from chronic phase CML patients revealed elevated levels of KLF4 in LSC compared to progenitor cells indicating that KLF4 is likely implicated in LSC regulation. To study the role of KLF4 in LSC function, we used a CML mouse model combining somatic deletion of the Klf4 gene and retroviral transduction and transplantation of HSC. In contrast to mice receiving BCR-ABL-transduced Klf4fl/fl HSC that developed and succumbed to CML, mice transplanted with BCR-ABL-transduced Klf4Δ/Δ (Klf4fl/fl Vav-iCre+) HSC showed a progressive loss of leukemia despite an initial expansion of myeloid leukemic cells, which led to increased overall survival. This inability to sustain CML in the absence of KLF4 was caused by attrition of LSC in bone marrow and the spleen. Furthermore, deletion of KLF4 impaired the ability of LSC to recapitulate leukemia in secondary recipients suggesting a loss of self-renewal capacity. In contrast to LSC, KLF4 deletion led to increased self-renewal of normal HSC assessed by serial competitive transplantation. To identify KLF4 target genes involved in LSC self-renewal, we performed a global gene expression analysis using Klf4Δ/Δ LSC purified by cell sorting from leukemic mice. Analysis of gene expression in Klf4Δ/Δ LSC revealed significant upregulation of GβL, a component of mTOR complexes. Finally, we identified that KLF4 binds to GβL promoter by Chip-Seq analysis and that silencing resulted in inhibition of mTORC2 but not mTORC1 activity in 32D-BCR-ABL-positive CML cells. Our findings suggest that KLF4 transcriptionally represses GβL expression in LSC and that mTORC2 inhibition has the potential to completely eradicate LSC and induce treatment-free remission. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 63 (4) ◽  
pp. 364-369 ◽  
Author(s):  
Milica Strnad ◽  
Goran Brajuskovic ◽  
Natasa Strelic ◽  
Biljana Zivanovic-Todoric ◽  
Ljiljana Tukic ◽  
...  

Background/Aim. Chronic myeloid leukemia (CML) represents a malignant myeloproliferative disease developed out of pluripotent hematopoietic stem cell that contains the fusion bcr-abl gene. Disorders that occur in the process of apoptosis represent one of the possible molecular mechanisms that bring about the disease progress. The aim of our study was to carry out the analysis of the presence of the amplification of the cmyc oncogene, as well as the analysis of the changes in the expression of Bcl-2 in the patients with CML. Methods. Our study included 25 patients with CML (18 in chronic phase, 7 in blast transformation). Using an immunohistochemical alkaline phosphatase-anti-alkaline phosphatase (APAAP) method, we analyzed the expression of cell death protein in the mononuclear bone marrow cells of 25 CML patients. By a differential PCR (polymerase chain reaction) method, we followed the presence of amplified c-myc gene in mononuclear peripheral blood cells. Results. The level of the expression of Bcl-2 protein was considerably higher in the bone marrow samples of the patients undergoing blast transformation of the disease. The amplification of c-myc gene was detected in 30% of the patients in blast transformation of the disease. Conclusion. The expression of Bcl-2 protein and the amplification of c-myc gene are in correlation with the disease progression.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2674-2674
Author(s):  
Seiji Fukuda ◽  
Hal E. Broxmeyer ◽  
Louis M. Pelus

Abstract The Flt3 receptor tyrosine kinase (Flt3) is expressed on primitive normal and transformed hematopoietic cells and Flt3 ligand (FL) facilitates hematopoietic stem cell mobilization in vivo. The CXC chemokine SDF-1α(CXCL12) attracts primitive hematopoietic cells to the bone marrow microenvironment while disruption of interaction between SDF-1α and its receptor CXCR4 within bone marrow may facilitate their mobilization to the peripheral circulation. We have previously shown that Flt3 ligand has chemokinetic activity and synergistically increases migration of CD34+ cells and Ba/F3-Flt3 cells to SDF-1α in short-term migration assays; this was associated with synergistic phosphorylation of MAPKp42/p44, CREB and Akt. Consistent with these findings, over-expression of constitutively active ITD (internal tandem duplication) Flt3 found in patients with AML dramatically increased migration to SDF-1α in Ba/F3 cells. Since FL can induce mobilization of hematopoietic stem cells, we examined if FL could antagonize SDF-1α/CXCR4 function and evaluated the effect of FL on in vivo homing of normal hematopoietic progenitor cells. FL synergistically increased migration of human RS4;11 acute leukemia cells, which co-express wild-type Flt3 and CXCR4, to SDF-1α in short term migration assay. Exogenous FL had no effect on SDF-1α induced migration of MV4-11 cells that express ITD-Flt3 and CXCR4 however migration to SDF-1α was partially blocked by treatment with the tyrosine kinase inhibitor AG1296, which inhibits Flt3 kinase activity. These results suggest that FL/Flt3 signaling positively regulates SDF-1α mediated chemotaxis of human acute leukemia cells in short-term assays in vitro, similar to that seen with normal CD34+ cells. In contrast to the enhancing effect of FL on SDF-1α, prolonged incubation of RS4;11 and THP-1 acute myeloid leukemia cells, which also express Flt3 and CXCR4, with FL for 48hr, significantly inhibited migration to SDF-1α, coincident with reduction of cell surface CXCR4. Similarly, prolonged exposure of CD34+ or Ba/F3-Flt3 cells to FL down-regulates CXCR4 expression, inhibits SDF-1α-mediated phosphorylation of MAPKp42/p44, CREB and Akt and impairs migration to SDF-1α. Despite reduction of surface CXCR4, CXCR4 mRNA and intracellular CXCR4 in Ba/F3-Flt3 cells were equivalent in cells incubated with or without FL, determined by RT-PCR and flow cytometry after cell permeabilization, suggesting that the reduction of cell surface CXCR4 expression is due to accelerated internalization of CXCR4. Furthermore, incubation of Ba/F3-Flt3 cells with FL for 48hr or over-expression of ITD-Flt3 in Ba/F3 cells significantly reduced adhesion to VCAM1. Consistent with the negative effect of FL on in vitro migration and adhesion to VCAM1, pretreatment of mouse bone marrow cells with 100ng/ml of FL decreased in vivo homing of CFU-GM to recipient marrow by 36±7% (P&lt;0.01), indicating that FL can negatively regulate in vivo homing of hematopoietic progenitor cells. These findings indicate that short term effect of FL can provide stimulatory signals whereas prolonged exposure has negative effects on SDF-1α/CXCR4-mediated signaling and migration and suggest that the FL/Flt3 axis regulates hematopoietic cell trafficking in vivo. Manipulation of SDF-1α/CXCR4 and FL/Flt3 interaction could be clinically useful for hematopoietic cell transplantation and for treatment of hematopoietic malignancies in which both Flt3 and CXCR4 are expressed.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5408-5408
Author(s):  
Xiaoyan Zhang ◽  
Jianyong Li ◽  
Kejiang Cao ◽  
Hanxin Wu ◽  
Hua Lu ◽  
...  

Abstract Background: Allogeneic hematopoietic stem cell transplantation (HSCT) is the only way to cure many hematologic malignancies. HLA-haploidentical related HSCT was performed in case of lack of HLA-matched donors. From the results of in-vitro and animal studies, Mesenchymal stem cells (MSCs) transplanted simultaneously with hematopoietic stem cells (HSCs) may support hematopoietic regeneration and have the immunomodulatory effect. MSCs together with HSCs transplantation from the same HLA-haploidentical donor were used in patients with hematologic malignancies. Patients and Methods: Three patients were chronic myeloid leukemia (blast crisis), chronic myeloid leukemia (chronic phase) and refractory T-cell lymphoblastic lymphoma (leukemia phase) respectively. Complete demographic and clinical details of these 3 patients are shown in Table 1. Bone marrow mononuclear cells obtained from their HLA-haploidentical related donors were cultured and expanded in vitro about 2 months before transplantation. Immunophenotype of the harvested cells were detected in order to identify them. After conditioned by cytosine arabinoside/cyclophosphamide/total body irradiation regimen, patients were co-transplanted with HSCs and ex-vivo expanded MSCs. Cyclosporine, methotrexate, antithymocyte globulin, mycophenolate mofetil and anti-CD25 monoclonal antibody were used together for prophylaxis of GVHD. Clinical features after transplantation in these patients were observed. Results: About 2×106 MSCs per kilogram of recipients’ weight were successfully expanded from bone marrow samples. These cells were CD73, CD90, CD105 positive and CD34, CD45, CD38, CD10, CD20, CD33, HLA-DR negative by flow cytometric analysis. No adverse response was observed during and after infusion of MSCs. Hematopoietic reconstruction was successful in all the patients. And they had full donor-type chimerism 1 month after transplantation. N1 received donor lymphocyte infusion (DLI) to prevent the relapse. N2 relapsed and received the therapy of STI571 combined with DLI. She had a complete remission at last. No graft-versus-host disease (GVHD) was observed in N1 and N2 until they received DLI. N1 died of infection 11 months after transplantation. N2 and N3 now have been followed up for 41 and 31 months respectively. Clinical features of patients after transplantation are shown in Table 2. Conclusions: Bone marrow derived MSCs can be tolerant well in HLA-haploidentical HSCT. Its exact effect in human HLA-haploidentical allogeneic HSCT needs to be studied further. Tab.1 Patient Demographic and Clinical Data Patient Diagnosis Age Sex Course of disease before transplantation Donor Mismatched HLA loci Abbr: LPL - lymphoblastic lymphoma; CML - chronic myeloid leukemia; BC - blast crisis; CP - chronic phase; yr - year; mo - month N1 T-LPL 22 F 7 yr mother 3 N2 CML-BC 32 F 6mo sibling brother 3 N3 CML-CP 22 M 5mo father 3 Tab.2 Clinical features of patients after transplantation Patient Hematopoietic reconstruction Donor-type chimerism Time of relapse time of DLI acute GVHD chronic GVHD survival Abbr: DLI - donor lymphocyte infusion; d - day; mo - month N1 15 d 100% no 5 mo IV (after DLI) extensive die in 11 mo N2 16 d 100% 6mo 6 mo IV (after DLI) no >41 mo N3 15 d 100% no no I limited >31 mo


Sign in / Sign up

Export Citation Format

Share Document