Survival and relapse in patients with thrombotic thrombocytopenic purpura

Blood ◽  
2010 ◽  
Vol 115 (8) ◽  
pp. 1500-1511 ◽  
Author(s):  
Johanna A. Kremer Hovinga ◽  
Sara K. Vesely ◽  
Deirdra R. Terrell ◽  
Bernhard Lämmle ◽  
James N. George

AbstractSurvival of patients with thrombotic thrombocytopenic purpura (TTP) improved dramatically with plasma exchange treatment, revealing risk for relapse. The Oklahoma TTP Registry is a population-based inception cohort of all 376 consecutive patients with an initial episode of clinically diagnosed TTP (defined as microangiopathic hemolytic anemia and thrombocytopenia with or without signs and symptoms of ischemic organ dysfunctions) for whom plasma exchange was requested, 1989 to 2008. Survival was not different between the first and second 10-year periods for all patients (68% and 69%, P = .83) and for patients with idiopathic TTP (83% and 77%, P = .33). ADAMTS13 activity was measured in 261 (93%) of 282 patients since 1995. Survival was not different between patients with ADAMTS13 activity < 10% (47 of 60, 78%) and patients with 10% or more (136 of 201, 68%, P = .11). Among patients with ADAMTS13 activity < 10%, an inhibitor titer of 2 or more Bethesda units/mL was associated with lower survival (P = .05). Relapse rate was greater among survivors with ADAMTS13 activity < 10% (16 of 47, 34%; estimated risk for relapse at 7.5 years, 41%) than among survivors with ADAMTS13 activity of 10% or more (5 of 136, 4%; P < .001). In 41 (93%) of 44 survivors, ADAMTS13 deficiency during remission was not clearly related to subsequent relapse.

Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Sara K. Vesely ◽  
James N. George ◽  
Bernhard Lämmle ◽  
Jan-Dirk Studt ◽  
Lorenzo Alberio ◽  
...  

Abstract Initial management of patients with thrombotic thrombocytopenic purpura—hemolytic uremic syndrome (TTP-HUS) is difficult because of lack of specific diagnostic criteria, high mortality without plasma exchange treatment, and risks of plasma exchange. Although severe ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats) deficiency may be specific for TTP, the role of ADAMTS13 activity measurements for initial management decisions is unknown. ADAMTS13 was measured before beginning plasma exchange treatment in 142 (88%) of 161 consecutive patients with clinically diagnosed TTP-HUS with assignment to 1 of 4 categories: less than 5% (severe deficiency), 5% to 9%, 10% to 25%, and more than 25%. Eighteen (13%) of 142 patients had severe ADAMTS13 deficiency. Among 6 predefined clinical categories (stem cell transplantation, pregnant/postpartum, drug association, bloody diarrhea, additional/alternative disorder, idiopathic), severe deficiency occurred only among pregnant/postpartum (2 of 10) and idiopathic (16 of 48) patients. The presenting features and clinical outcomes of the 16 patients with idiopathic TTP-HUS who had severe ADAMTS13 deficiency were variable and not distinct from the 32 patients with idiopathic TTPHUS who did not have severe ADAMTS13 deficiency. Many patients in all ADAMTS13 activity categories apparently responded to plasma exchange treatment. Therefore, severe ADAMTS13 deficiency does not detect all patients who may be appropriately diagnosed with TTP-HUS and who may respond to plasma exchange treatment. (Blood. 2003;102:60-68)


Hematology ◽  
2002 ◽  
Vol 2002 (1) ◽  
pp. 315-334 ◽  
Author(s):  
James N. George ◽  
J. Evan Sadler ◽  
Bernhard Lämmle

Abstract Abnormalities of plasma von Willebrand factor (VWF) have been recognized to be associated with thrombotic thrombocytopenic purpura (TTP) for over 20 years. Patients with chronic, relapsing TTP have VWF multimers that are larger than normal, similar in size to those secreted by cultured endothelial cells. Recent observations have documented that a deficiency of a VWF-cleaving protease (termed ADAMTS13) may be responsible for the presence of these unusually large VWF multimers. Multiple mutations of the ADAMTS13 gene can result in ADAMTS13 deficiency and cause congenital TTP; autoantibodies neutralizing ADAMTS13 protease activity have been associated with acquired TTP. In Section I, Dr. Evan Sadler reviews the structure, biosynthesis, and function of the ADAMTS13 protease. He describes the mutations that have been identified in congenital TTP and describes the relationship of ADAMTS13 deficiency to the development of both congenital and acquired TTP. Dr. Sadler postulates that the development of TTP may be favored by conditions that combine increased VWF secretion, such as during the later stages of pregnancy, and decreased ADAMTS13 activity. In Section II, Dr. Bernhard Lämmle describes the assay methods for determining ADAMTS13 activity. Understanding the complexity of these methods is essential for understanding the difficulty of assay performance and the interpretation of assay data. Dr. Lämmle describes his extensive experience measuring ADAMTS13 activity in patients with TTP as well as patients with acute thrombocytopenia and severe illnesses not diagnosed as TTP. His data suggest that a severe deficiency of ADAMTS13 activity (&lt; 5%) is a specific feature of TTP. However, he emphasizes that, although severe ADAMTS13 deficiency may be specific for TTP, it may not be sensitive enough to identify all patients who may be appropriately diagnosed as TTP and who may respond to plasma exchange treatment. In Section III, Dr. James George describes the evaluation and management of patients with clinically suspected TTP, as well as adults who may be described as having hemolytic-uremic syndrome (HUS). Dr. George presents a classification of TTP and HUS in children and adults. Appropriate evaluation and management are related to the clinical setting in which the diagnosis is considered. A clinical approach is described for patients in whom the diagnosis of TTP or HUS is considered (1) following bone marrow transplantation, (2) during pregnancy or the postpartum period, (3) in association with drugs which may cause TTP either by an acute immune-mediated toxicity or a dose-related toxicity, (4) following a prodrome of bloody diarrhea, (5) in patients with autoimmune disorders, and (6) in patients with no apparent associated condition who may be considered to have idiopathic TTP. Patients with idiopathic TTP appear to have the greatest frequency of ADAMTS13 deficiency and appear to be at greatest risk for a prolonged clinical course and subsequent relapse. Management with plasma exchange has a high risk of complications. Indications for additional immunosuppressive therapy are described.


Blood ◽  
2010 ◽  
Vol 116 (20) ◽  
pp. 4060-4069 ◽  
Author(s):  
James N. George

Abstract Thrombotic thrombocytopenic purpura (TTP) is the common name for adults with microangiopathic hemolytic anemia, thrombocytopenia, with or without neurologic or renal abnormalities, and without another etiology; children without renal failure are also described as TTP. The diagnosis of TTP is an indication for plasma exchange treatment, but beginning treatment requires sufficient confidence in the diagnosis to justify the risk of plasma exchange complications. Documentation of a severe deficiency of plasma ADAMTS13 activity, defined as less than 10% of normal, is not essential for the diagnosis of TTP. Some patients without severe ADAMTS13 deficiency may benefit from plasma exchange treatment; in addition, some patients with severe ADAMTS13 deficiency may subsequently be diagnosed with another cause for their clinical features. However, severe acquired ADAMTS13 deficiency does define a subgroup of patients who appear to benefit from treatment with corticosteroids and other immunosuppressive agents in addition to plasma exchange but who have a high risk for relapse. Approximately 80% of patients survive their acute episode, a survival rate that has not changed since the introduction of plasma exchange treatment. Although recovery may appear to be complete, many patients have persistent minor cognitive abnormalities. More effective as well as safer treatment for TTP is needed.


2017 ◽  
Vol 18 (1) ◽  
pp. 61-68
Author(s):  
Željko Todorović ◽  
Milena Jovanovic ◽  
Dusan Todorovic ◽  
Dejan Petrovic ◽  
Predrag Djurdjevic

Abstract Thrombotic thrombocytopenic purpura (TTP) is a clinical syndrome that manifests with thrombocytopenia, microangiopathic haemolytic anaemia and symptoms and signs of kidney and brain damage, but it rarely involves other organs. The main pathophysiological cause of TTP is diminished metalloproteinase ADAMTS13 activity; the main function of ADAMTS13 is to degrade large multimers of the von Willebrand factor. Diminished activity of ADAMTS13 is caused either by a genetic mutation in the gene that codes ADAMTS13 (congenital TTP) or by antibodies that block ADAMTS13 enzyme activity or accelerate the degradation of ADAMTS13 (acquired TTP). Clinically, TTP presents most frequently with signs and symptoms of brain and kidney damage with concomitant haemorrhagic syndrome. TTP is suspected when a patient presents with a low platelet count, microangiopathic haemolytic anaemia (negative Coombs tests, low haptoglobine concentration, increased serum concentration of indirect bilirubin and lactate dehydrogenase, increased number of schysocytes in peripheral blood) and the typical clinical presentation. A definitive diagnose can be made only by measuring the ADAMTS13 activity. The differential diagnosis in such cases includes both typical and atypical haemolytic uremic syndrome, disseminated intravascular coagulation, HELLP syndrome in pregnant women and other thrombotic microangiopathies. The first line therapy for TTP is plasma exchange. In patients with acquired TTP, in addition to plasma exchange, immunosuppressive medications are used (corticosteroids and rituximab). In patients with hereditary TTP, the administration of fresh frozen plasma is sometimes required.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4752-4752
Author(s):  
Shruti Chaturvedi ◽  
Keith R. McCrae ◽  
Desiree Carcioppolo

Background and Objective Thrombotic thrombocytopenic purpura is often associated with a severe congenital or antibody mediated deficiency of ADAMTS13. The wider availability of the ADAMTS13 activity assay has led to it being used to aid in making treatment decisions. However, a proportion of patients with clinically diagnosed TTP who respond well to plasma exchange do not have severe ADAMTS13 deficiency. We studied a cohort of 57 patients with TTP to compare the presenting features and clinical outcomes of patients with and without severe ADAMTS13 deficiency. Methods We identified a cohort of 57 patients treated for TTP at the Cleveland Clinic between 2000 and 2012 who underwent testing for ADAMTS13 activity prior to transfusion of blood products or initiation of plasma exchange. Clinical and laboratory data were gathered from their medical records. Fisher exact test was used to compare categorical variables and the T-test was used to compare continuous variables between patients with and without severe ADAMTS13 deficiency defined as undetectable (<5%) activity. Results Thirty six (63%) of 57 patients had severe ADAMTS13 deficiency while the remaining 21 (37%) has ADAMTS13 activity ranging from 8% to 56%. Of the 36 patients with severe ADAMTS13 deficiency, 28 had idiopathic TTP while 8 had secondary TTP. For patients with detectable ADAMTS13 levels there were 12 and 9 patients with idiopathic and secondary TTP respectively. There was no significant difference in the clinical setting (idiopathic versus secondary TTP) (p=100), age (p=0.190) or sex distribution (p=0.362) between patients with and without severe ADAMTS13 deficiency. Patients with and without severe ADAMTS13 deficiency had heterogeneous clinical presentations which were not significantly different with comparable rates of fever (p=0.555), neurological symptoms (p=0.140), anemia (p=0.203) and thrombocytopenia (0.223). However, patients with detectable ADAMTS13 activity had higher rates of renal impairment at presentation (34% versus 72%, p=0.012) and higher mean serum creatinine at presentation (3.23±2.55 versus 1.94±2.21, p=0.009). Both groups of patients had similar rates of response to plasma exchange, mortality (p=0.620) and relapse (p=1.000). However patients with detectable ADAMTS13 activity had significantly worse renal outcomes than patients with severe deficiency with higher rates of acute renal failure needing dialysis [Relative Risk (RR) 2.89, 95% CI 1.66-5.05), progression to chronic renal insufficiency (RR 2.86, 95% CI 1.37-5.96) and end stage renal disease needing dialysis (RR 3.12, 95% CI 2.11-4.61). Conclusions Patients with and without severe ADAMTS13 deficiency have similar presenting features and clinical outcomes (mortality and relapse). Patients with detectable or normal ADAMTS13 activity have worse renal outcomes (acute renal failure, chronic renal insufficiency). At least some of these patients may have an alternative form of thrombotic microangiopathy such as atypical hemolytic uremic syndrome (aHUS) and may be candidates for earlier evaluation for aHUS and possible complement directed therapy. Disclosures: No relevant conflicts of interest to declare.


Hematology ◽  
2018 ◽  
Vol 2018 (1) ◽  
pp. 539-547 ◽  
Author(s):  
Kathryn Dane ◽  
Shruti Chaturvedi

Abstract The advent of plasma exchange has dramatically changed the prognosis of acute thrombotic thrombocytopenic purpura (TTP). Recent insights into TTP pathogenesis have led to the development of novel therapies targeting pathogenic anti-ADAMTS13 antibody production, von Willebrand factor (VWF)–platelet interactions, and ADAMTS13 replacement. Retrospective and prospective studies have established the efficacy of rituximab as an adjunct to plasma exchange for patients with acute TTP, either upfront or for refractory disease. Relapse prevention is a major concern for survivors of acute TTP, and emerging data support the prophylactic use of rituximab in patients with persistent or recurrent ADAMTS13 deficiency in clinical remission. Capalcizumab, a nanobody directed against domain A1 of VWF that prevents the formation of VWF–platelet aggregates, recently completed phase 2 (TITAN) and 3 (HERCULES) trials with encouraging results. Compared with placebo, caplacizumab shortened the time to platelet recovery and may protect against microthrombotic tissue injury in the acute phase of TTP, though it does not modify the underlying immune response. Other promising therapies including plasma cell inhibitors (bortezomib), recombinant ADAMTS13, N-acetyl cysteine, and inhibitors of the VWF–glycoprotein Ib/IX interaction (anfibatide) are in development, and several of these agents are in prospective clinical studies to evaluate their efficacy and role in TTP. In the coming years, we are optimistic that novel therapies and international collaborative efforts will usher in even more effective, evidence-based approaches to address refractory acute TTP and relapse prevention.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1060-1060 ◽  
Author(s):  
Flora Peyvandi ◽  
Silvia Lavoretano ◽  
Roberta Palla ◽  
Hendrik B. Feys ◽  
Tullia Battaglioli ◽  
...  

Abstract The introduction of plasma exchange therapy in early 1970s significantly reduced the rate of mortality in patients affected by thrombotic thrombocytopenic purpura (TTP), a disease characterized by thrombocytopenia and microangiopathic hemolytic anemia. A similar improvement was never achieved in the prevention of the disease recurrence. Still, 20–50% of patients, who survived the fatal disease, experience a relapse one month or even years after the acute episode of TTP. There is no pathognomic marker or laboratory test that can be used for the surveillance of TTP during remission and predict which patients will relapse. We have retrospectively analyzed for the first time at remission the role of ADAMTS13, anti-ADAMTS13 autoantibodies and von Willebrand Factor (VWF) in 109 patients who survived the acute episode of TTP. ADAMTS13 activity and ADAMTS13 antigen levels were measured as described by Gerritsen et al (TH 1999) and Feys HB et al. (JTH 2006), respectively. The total anti-ADAMTS13 autoantibodies (with and without neutralizing activity) were measured by western blot analysis and the presence of neutralizing anti-ADAMTS13 autoantibodies was checked according to Gerritsen et al (TH 1999). VWF antigen was measured using an ELISA assay and VWF multimers analysis was carried out using low-resolution SDS-agarose gel electrophoresis and exposing gels to human anti-VWF antibodies labeled with I125 for autoradiography (Ruggeri & Zimmerman, Blood 1981). All variables have been statistically analyzed in 2 subgroups of patients with or without TTP recurrence, in order to understand the role of each variable as a potential predictor marker for recurrence. Univariate and multivariate analysis were carried out to evaluate adjusted and unadjusted odds ratios (Ors) with 95% confidence intervals (CI) as a measure of the relative risk of relapse associated with the risk factors under investigation. Our data showed that the median value of ADAMTS13 activity and antigen levels at remission were significantly lower in patients with recurrent TTP than in patients with no relapse (ADAMTS13 activity: 12% vs. 41%; p=0.007; ADAMTS13 antigen: 36% vs 58%; p=0.003). Furthermore, the prevalence of patients with severe ADAMTS13 deficiency (≤10%) was significantly higher in the group of patients who relapsed (OR=2.9 CI95% 1.3–6.8, p=0.01). The prevalence of anti-ADAMTS13 autoantibodies (with or without neutralizing activity) resulted to be significantly higher in patients with recurrent TTP (OR= 3.1 CI 95% 1.4–7.3, p=0.006). A higher VWF antigen levels or the presence of ultralarge VWF (ULVWF) multimers at remission did not increase the risk of recurrence (p=0.4 for VWF:Ag and p=0.7 for ULVWF multimers). In conclusion, our data showed that the association of severe ADAMTS13 deficiency and the presence of anti-ADAMTS13 autoantibodies is a negative prognostic marker at remission and increases the relative risk of TTP recurrence by 3.6 times (OR=3.6 CI95% 1.4–9). Therefore our results would suggest that our efforts should go in the direction of maintenance therapy which aims at reducing or abolishing the presence of antibodies during remission and increasing the level of ADAMTS13 in plasma in order to prevent the recurrence of TTP.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4113-4113
Author(s):  
Jinghua Wang ◽  
Na Liu ◽  
Fang Liu ◽  
Changgeng Ruan ◽  
Juan Liu ◽  
...  

Abstract Thrombotic thrombocytopenic purpura(TTP) is a serious, low morbidity and high mortality disease, which can simultaneously affect multiple systems in the patients’ body. In the event that the patients cannot be treated by plasma exchange(PE), mortality will be 95–100%(1). Between September, 2000 and May, 2003, thirteen patients with TTP were treated mainly by heparin, vincristine, dexamethasone, six of whom have acceptted one or two PE. The results were excellent. Twelve of the thirteen patients survived. One patient was dead. The ADAMTS13 activity was measured in 10 patients using a Residual-Collagen Binding Assay(R-CBA).


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4666-4666
Author(s):  
Moon Jang ◽  
So Young Chong ◽  
Inho Kim ◽  
Chul W. Jung ◽  
Doyeun Oh

Abstract Abstract 4666 The clinical significance of ADAMTS13 activity for response to treatment, mortality rate, recurrence, and prognosis is unclear. Therefore, we investigated the characteristics of severe ADAMTS13 deficiency and evaluated its clinical significance in Thrombotic thrombocytopenic purpura (TTP). The Korean TTP Registry includes 66 patients from 13 teaching hospitals in Korea who received the diagnosis of TTP from January 2005 to December 2008. Blood samples obtained upon admission were sent for ADAMTS13 analysis (multimer analysis by sodium dodecyl sulfate electrophoresis and/or ELISA) to a central laboratory along with patient clinical information. After 6 months, patient data regarding treatment, response, and prognosis were collected on standardized report forms. Patients with severe ADAMTS13 deficiency had lower serum creatinine levels (P=0.001) and WBC counts (P=0.050) than patients with non-severe ADAMTS13 deficiency. Although severe ADAMTS13 deficiency was associated with better response rate (75% vs 53%, P=0.145), remission rate (81% vs 61%, P=0.209), and mortality rate (19% vs 31%, P=0.508) than non-severe ADAMTS13 deficiency, treatment outcomes did not differ significantly between groups. After adjusting for clinical and laboratory features, multivariate analysis did not reveal any independent risk factors for TTP-associated mortality. Patients with severe ADAMTS13 deficient had lower serum creatinine levels and WBC counts at presentation but Severe ADAMTS13 activity deficiency at TTP diagnosis does not appear to have prognostic significance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3556-3556
Author(s):  
Nathan T. Connell ◽  
Joseph D. Sweeney

Abstract Introduction While the activity level of ADAMTS13 can be helpful in diagnosing patients with thrombotic thrombocytopenic purpura (TTP), the current long turnaround time of this test for most institutions limits its role in early clinical decision-making about the initiation of plasma exchange. Levels of ADAMTS13<10% are pathognomonic of TTP and levels in excess of 10% indicate an alternate cause of thrombotic microangiopathy. The aim of the study was to look at recent practice in the State of Rhode Island regarding the criteria for initiation of plasma exchange with a subsequent categorization of those patients based on ADAMTS13 activity levels. Methods Patients with a diagnosis of TTP were identified from hospital records of the major hospitals in Rhode Island which perform therapeutic apheresis in calendar years 2011 and 2012. From a chart review and blood bank records, baseline clinical parameters were collected, the number of therapeutic plasma exchanges (TPE) performed and the volume of plasma utilized. Pre-treatment ADAMTS13 activity was recorded if available in addition to the number of days from the initiation of TPE to test result availability. An analysis was performed to examine if patients who had a pre-treatment ADAMTS13 activity level ≤10% differed in baseline characteristics or response to TPE from those with activity levels >10%. Based on the normality of the distribution of the data, independent t-tests or Wilcoxon rank-sum tests were performed using SAS version 9.3. Results During this two year period, 24 patients received plasma exchange in Rhode Island for a presumptive diagnosis of TTP. The mean age was 47 years (range 20-89 years) and 38% were male. ADAMTS13 activity was available for 20 patients and 7 (30% of those exchanged) had documented pre-treatment activity levels ≤10% consistent with TTP. The median turnaround time for the ADAMTS13 assay was 10 days (range 2-52). Mean baseline parameters at the time of presentation are shown in the table. As expected, creatinine levels were lower in those patients with true TTP (p=0.0410). ADAMTS13 activity level was predictive of the number of days to a platelet count ≥150 x 109/L (Pearson correlation 0.56; p-value 0.0458). Overall, 4238 units of plasma were utilized for exchange. Of these 4238 units, 1886 were transfused to patients who were subsequently shown to have an ADAMTS13 activity >10%, and 813 of the 1886 units (20% of all plasma exchanged) were transfused after the results of enzyme activity were available in this population. Conclusions Based on an ADAMTS13 >10%, a significant volume of plasma was unnecessarily transfused. Reducing the turnaround time for the ADAMTS13 assay in tertiary care centers could help clinicians better determine which patients will benefit from plasma exchange, avoiding the morbidity and expense associated with large volume plasma exchange. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document