scholarly journals Risk Factors for Early Relapse after Allogeneic Hematopoietic Cell Transplantation in Acute Myeloid Leukemia

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4603-4603
Author(s):  
Sagar S. Patel ◽  
Betty K. Hamilton ◽  
Lisa Rybicki ◽  
Dawn Thomas ◽  
Arden Emrick ◽  
...  

Abstract Background While allogeneic hematopoietic cell transplantation (alloHCT) can be curative for patients with acute myeloid leukemia (AML), relapse remains a significant challenge. Previous work has suggested that disease status at time of transplant and cytogenetics are important predictors of relapse. However, it is unclear if common somatic mutations or dimorphisms of MHC class I chain-related gene A (MICA), a ligand of the natural killer (NKG2D) receptor on immune effector cells that helps mediate NK cell alloreactivity, also contribute. Moreover, the mechanisms of early relapse are an area of ongoing investigation. We assessed risk factors for relapse within 6 and 12 months after alloHCT. Methods We conducted a single center, retrospective analysis of adults with AML who underwent a first alloHCT. Analysis was restricted to patients with T-cell replete HLA-8/8 matched related or unrelated donor. In addition to cytogenetic risk group stratification by European LeukemiaNet criteria (Döhner H, et al, Blood 2016), a subset of patients had a 36-gene somatic mutation panel assessed prior to alloHCT by next-generation sequencing. Dimorphisms at the MICA-129 position have previously been categorized as weaker (valine/valine: V/V), heterozygous (methionine/valine: M/V), or stronger (methionine/methionine: M/M) receptor binding affinity. Risk factors for early relapse were assessed with Fine and Gray competing risk regression with results as hazard ratios (HR) and 95% confidence intervals (CI). Results From 2000 - 2017, 319 adult AML patients were identified meeting inclusion criteria. Median age at transplant was 51 years (range, 18-74), with 95% Caucasian. The distribution of low, intermediate, and high HCT-CI scores was 28%, 28%, and 44%, respectively. 75% of patients were transplanted ≤12 months from diagnosis. Disease status at transplant included 48% in first complete remission (CR1), 19% in second CR (CR2), 33% in third CR or relapsed/refractory or untreated (collectively, <CR2). By cytogenetic risk stratification, 13% of patients had favorable, 58% had intermediate, and 29% had adverse-risk cytogenetics. The four most common somatic mutations were FLT3 (12%), NPM1 (10%), DNMT3A (7%), and TET2 (6%). MICA mismatch was present in 10% of patients. The distribution of donor MICA-129 dimorphisms were 44% V/V, 51% M/V, and 5% M/M. 56% of patients had a related donor. A myeloablative transplant was performed in 88% of patients and 63% had a BM graft source. Conditioning with busulfan/cyclophosphamide was used in 56% of patients. In univariable analysis, non-Caucasian race, disease status <CR2, and adverse cytogenetics were risk factors for relapse within 6 months; all but race were also risk factors for relapse within 12 months. None of the somatic mutations assessed, MICA mismatch, nor dimorphisms at the MICA-129 position were identified as risk factors for early relapse. In multivariable analysis, relative to CR1, patients in <CR2 was a risk factor for relapse within 6 months (HR 2.21, CI 1.28-3.82, P=0.005) and 12 months (HR 2.23, CI 1.39-3.58, P<0.001), while patients in CR2 also had higher risk of relapse within 12 months relative to CR1 (HR 2.02, CI 1.10-3.70, P=0.024) (Figures 1A, 1B). In addition, adverse-risk cytogenetics were a risk factor for relapse within 6 months (HR 3.96, CI 1.33-11.8, P=0.013) and 12 months (HR 3.58, CI 1.67-7.68 P=0.001) (Figures 2A, 2B). Relapse incidence estimates (CI) at 6 months were 16% (11-22) CR1, 15% (7-25) CR2, and 33% (24-42) <CR2; estimates were 10% (3-22) for favorable, 17% (12-23) intermediate, and 31 % (22-41) adverse-risk cytogenetics. Relapse incidence estimates at 12 months were 21% (15-28) CR1, 30% (19-41) CR2, and 42% (33-52) <CR2; estimates were 21% (10-36) for favorable, 21% (15-27) intermediate, and 47% (36-57) adverse-risk cytogenetics. Conclusion Relapse after alloHCT for AML remains a challenge. In our study, the strongest risk factors for early relapse after alloHCT remains absence of CR1 disease status at transplant and adverse-risk cytogenetics. We observed no prognostic effect of somatic mutations nor MICA dimorphisms prior to transplant on 6 or 12-month relapse post-transplant. Further interrogation of pre-transplant or post-transplant persistence of somatic mutations in a larger series may better risk stratify subjects who may benefit from more intensive or innovative approaches to prevent post-transplant relapse. Disclosures Nazha: MEI: Consultancy. Advani:Amgen: Research Funding; Pfizer: Honoraria, Research Funding; Novartis: Consultancy; Glycomimetics: Consultancy. Carraway:Novartis: Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Balaxa: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; FibroGen: Consultancy; Jazz: Speakers Bureau; Agios: Consultancy, Speakers Bureau. Gerds:Celgene: Consultancy; Apexx Oncology: Consultancy; Incyte: Consultancy; CTI Biopharma: Consultancy. Sekeres:Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees. Maciejewski:Apellis Pharmaceuticals: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Majhail:Atara: Honoraria; Incyte: Honoraria; Anthem, Inc.: Consultancy.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2075-2075
Author(s):  
Sagar S. Patel ◽  
Betty K. Hamilton ◽  
Lisa Rybicki ◽  
Dawn Thomas ◽  
Arden Emrick ◽  
...  

Abstract Background MHC class I chain-related gene A (MICA) is a polymorphic ligand of the natural killer (NKG2D) receptor on immune effector cells. The activating NKG2D receptor controls immune responses by regulating NK cells, NKT cells and γδ-T cells. Dimorphisms at sequence position 129 of the MICA gene confers varying levels of binding affinity to NKG2D receptor. MICA previously has been associated with post-allogeneic hematopoietic cell transplantation (alloHCT) outcomes including graft-versus-host-disease (GvHD), infection, and relapse. However, it is unclear how MICA interacts with cytogenetic and somatic mutations in regards to these outcomes in acute myeloid leukemia (AML). Methods We conducted a single center, retrospective analysis of adult AML patients in first or second complete remission (CR1, CR2), who underwent T-cell replete matched related or unrelated donor alloHCT. Analysis was limited to those who had MICA data available for donors and recipients. In addition to cytogenetic risk group stratification by European LeukemiaNet criteria (Döhner H, et al, Blood 2016), a subset of patients had a 36-gene somatic mutation panel assessed prior to alloHCT by next-generation sequencing. Dimorphisms at the MICA-129 position have previously been categorized as weaker (valine/valine: V/V), heterozygous (methionine/valine: M/V), or stronger (methionine/methionine: M/M) receptor binding affinity. Fine and Gray or Cox regression was used to identify the association of MICA and outcomes with results as hazard ratios (HR) and 95% confidence intervals (CI). Results From 2000 - 2017, 131 AML patients were identified meeting inclusion criteria. Median age at transplant was 54 years (18-74), with 98% Caucasian. Disease status at transplant included 78% CR1 and 22% CR2. Cytogenetic risk stratification showed 13% of patients as favorable, 56% as intermediate, and 31% as adverse-risk. The five most common somatic mutations were FLT3 (15%), NPM1 (14%), DNMT3A (11%), TET2 (7%), and NRAS (6%). 60% of patients had a related donor. A myeloablative transplant was performed in 84% of patients and 53% had a bone marrow graft source. The most common conditioning regimen used was busulfan/cyclophosphamide (52%). 12% of patients were MICA mismatched with their donor. The distribution of donor MICA-129 polymorphisms were 41% V/V, 53% M/V, and 6% M/M. In univariable analysis, donor-recipient MICA mismatch tended to be associated with a lower risk of infection (HR 0.49, CI 0.23-1.02, P=0.06) and grade 2-4 acute GvHD (HR 0.25, CI 0.06-1.04, P=0.06) but was not associated with other post-transplant outcomes. In multivariable analysis, donor MICA-129 V/V was associated with a higher risk of non-relapse mortality (NRM) (HR 2.02, CI 1.01-4.05, P=0.047) (Figure 1) along with increasing patient age at transplant (HR 1.46, CI 1.10-1.93, p=0.008) and the presence of a TET2 mutation (HR 6.00, CI 1.77-20.3, P=0.004). There were no differences between the V/V and the M/V+M/M cohorts regarding somatic mutational status, cytogenetics and other pre-transplant characteristics and post-transplant outcomes. With a median follow-up of 65 months for both cohorts, 45% vs. 49% of patients remain alive, respectively. The most common causes of death between the V/V and the M/V+M/M cohorts was relapse (38% vs. 62%) and infection (31% vs. 8%), respectively. Conclusion While previous studies have demonstrated associations of somatic mutations and cytogenetics with survival outcomes after alloHCT for AML, we observed mutations in TET2 and the V/V donor MICA-129 polymorphism to be independently prognostic for NRM. Mechanistic studies may be considered to assess for possible interactions of TET2 mutations with NK cell alloreactivity. The weaker binding affinity to the NKG2D receptor by the V/V phenotype may diminish immune responses against pathogens that subsequently contribute to higher NRM. These observations may have implications for enhancing patient risk stratification prior to transplant and optimizing donor selection. Future investigation with larger cohorts interrogating pre-transplant AML somatic mutations with MICA polymorphisms on post-transplant outcomes may further elucidate which subsets of patients may benefit most from transplant. Disclosures Nazha: MEI: Consultancy. Mukherjee:Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Projects in Knowledge: Honoraria; BioPharm Communications: Consultancy; Bristol Myers Squib: Honoraria, Speakers Bureau; Takeda Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; LEK Consulting: Consultancy, Honoraria; Aplastic Anemia & MDS International Foundation in Joint Partnership with Cleveland Clinic Taussig Cancer Institute: Honoraria. Advani:Amgen: Research Funding; Pfizer: Honoraria, Research Funding; Glycomimetics: Consultancy; Novartis: Consultancy. Carraway:Novartis: Speakers Bureau; Balaxa: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Jazz: Speakers Bureau; FibroGen: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Speakers Bureau. Gerds:Apexx Oncology: Consultancy; Celgene: Consultancy; Incyte: Consultancy; CTI Biopharma: Consultancy. Sekeres:Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees. Maciejewski:Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ra Pharmaceuticals, Inc: Consultancy; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Apellis Pharmaceuticals: Consultancy. Majhail:Incyte: Honoraria; Anthem, Inc.: Consultancy; Atara: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 266-266
Author(s):  
Sagar Patel ◽  
Saulius K. Girnius ◽  
Binod Dhakal ◽  
Lohith Gowda ◽  
Raphael Fraser ◽  
...  

Background Primary plasma cell leukemia (pPCL) is a rare plasma cell neoplasm with a high mortality rate. There have been improvements in multiple myeloma (MM) outcomes with novel induction agents and use of hematopoietic cell transplantation (HCT) with maintenance, but similar progress has not been reported for pPCL. We examined the outcomes of pPCL patients receiving novel agents with autologous (autoHCT) or allogeneic (alloHCT) approaches as reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) in the modern era. Methods From 2008 to 2015, 348 pPCL pts underwent HCT (N = 277 - autoHCT and 71 - alloHCT) with 45% and 48% having research level data available, respectively. Cumulative incidences of non-relapse mortality (NRM) and relapse/progression (REL), and probability of progression-free survival (PFS) and overall survival (OS) were calculated. Cox multivariate regression was used to model survival after autoHCT only. Median follow-up in autoHCT and alloHCT was 48 and 60 months, respectively. Results AutoHCT Cohort Median age was 60 years and 93% received HCT within 12 months of diagnosis with 76% after a single line of induction (Table 1). 35% had high risk cytogenetics. 23% received bortezomib, doxorubicin, cisplatin, cyclophosphamide, and etoposide (VDPACE). Moreover, 40% received bortezomib (BTZ) and immunomodulatory drug (IMIID)-based triplets. Disease status at HCT was VGPR or better in 47%. 27% received maintenance therapy. At 4 years post-HCT, NRM was 7% (4-11%), REL 76% (69-82%), PFS 17% (13-23%), and OS 28% (22-35%) (Figures 1A, 2A, 2B). Disease status ≥VGPR at HCT and Karnofsky Performance Score &gt;90 significantly predicted superior OS in multivariate analysis. AlloHCT Cohort Median age was 53 years and 89% received HCT within 12 months of diagnosis (Table 1). 61% received a single alloHCT, while 39% used auto-alloHCT tandem approach. 42% had high-risk cytogenetics. 61% received total body irradiation with 44% receiving myeloablative conditioning. Use of VDPACE was higher at 41% in this cohort. VGPR status at HCT was similar (48%), while maintenance was used less often (12%). Grade II-IV acute GVHD occurred in 30% and chronic GVHD in 45%. At four years post-HCT, NRM was 12% (5-21%), REL 69% (56-81%), PFS 19% (10-31%), and OS 31% (19-44%) (Figures 1A, 1B, 2A, 2B). There were no differences in outcomes based on type of HCT. A comparison of post-HCT outcomes of CIBMTR pPCL patients from 1995 to 2006 showed that PFS and OS outcomes are inferior despite lower NRM in this modern cohort (Mahindra et al. Leukemia. 2012). In addition, analysis of SEER (1995-2009) and CIBMTR databases showed that use of HCT increased from 12% (7-21%) in 1995 to 46% (34-64%) in 2009. Conclusion More newly diagnosed pPCL patients are receiving modern induction regimens translating into a higher proportion receiving HCT, but without significant further benefit post-HCT. Post-HCT relapse remains the biggest challenge and further survival in pPCL will likely need a combination of targeted and cell therapy approaches. This study provides a benchmark for future HCT studies for pPCL. Disclosures Girnius: Takeda: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Dhakal:Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria. Shah:University of California, San Francisco: Employment; Indapta Therapeutics: Equity Ownership; Genentech, Seattle Genetics, Oncopeptides, Karoypharm, Surface Oncology, Precision biosciences GSK, Nektar, Amgen, Indapta Therapeutics, Sanofi: Membership on an entity's Board of Directors or advisory committees; Celgene, Janssen, Bluebird Bio, Sutro Biopharma: Research Funding; Poseida: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Nkarta: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kite: Consultancy, Membership on an entity's Board of Directors or advisory committees; Teneobio: Consultancy, Membership on an entity's Board of Directors or advisory committees. Qazilbash:Amgen: Consultancy, Other: Advisory Board; Bioclinical: Consultancy; Autolus: Consultancy; Genzyme: Other: Speaker. Kumar:Celgene: Consultancy, Research Funding; Takeda: Research Funding; Janssen: Consultancy, Research Funding. D'Souza:EDO-Mundapharma, Merck, Prothena, Sanofi, TeneoBio: Research Funding; Prothena: Consultancy; Pfizer, Imbrium, Akcea: Membership on an entity's Board of Directors or advisory committees. Hari:BMS: Consultancy, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Kite: Consultancy, Honoraria; Amgen: Research Funding; Spectrum: Consultancy, Research Funding; Sanofi: Honoraria, Research Funding; Cell Vault: Equity Ownership; AbbVie: Consultancy, Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Hassan Awada ◽  
Arda Durmaz ◽  
Carmel Gurnari ◽  
Ashwin Kishtagari ◽  
Manja Meggendorfer ◽  
...  

Genetic mutations (somatic or germline), cytogenetic abnormalities and their combinations contribute to the heterogeneity of acute myeloid leukemia (AML) phenotypes. To date, prototypic founder lesions [e.g., t(8;21), inv(16), t(15;17)] define only a fraction of AML subgroups with specific prognoses. Indeed, in a larger proportion of AML patients, somatic mutations or cytogenetic abnormalities potentially serve as driver lesions in combination with numerous acquired secondary hits. However, their combinatorial complexity can preclude the resolution of distinct genomic classifications and overlap across classical pathomorphologic AML subtypes, including de novo/primary (pAML) and secondary AML (sAML) evolving from an antecedent myeloid neoplasm (MN). These prognostically discrete AML subtypes are themselves nonspecific due to variable understanding of their pathogenetic links, especially in cases without overt dysplasia. Without dysplasia, reliance is mainly on anamnestic clinical information that might be unavailable or cannot be correctly assigned due to a short prodromal history of antecedent MN. We explored the potential of genomic markers to sub-classify AML objectively and provide unbiased personalized prognostication, irrespective of the clinicopathological information, and thus become a standard in AML assessment. We collected and analyzed genomic data from a multicenter cohort of 6788 AML patients using standard and machine learning (ML) methods. A total of 13,879 somatic mutations were identified and used to predict traditional pathomorphologic AML classifications. Logistic regression modeling (LRM) detected mutations in CEBPA (both monoallelic "CEBPAMo" and biallelic "CEBPABi"), DNMT3A, FLT3ITD, FLT3TKD, GATA2, IDH1, IDH2R140, NRAS, NPM1 and WT1 being enriched in pAML while mutations in ASXL1, RUNX1, SF3B1, SRSF2, U2AF1, -5/del(5q), -7/del(7q), -17/del(17P), del(20q), +8 and complex karyotype being prevalent in sAML. Despite these significant findings, the genomic profiles of pAML vs. sAML identified by LRM resulted in only 74% cross-validation accuracy of the predictive performance when used to re-assign them. Therefore, we applied Bayesian Latent Class Analysis that identified 4 unique genomic clusters of distinct prognoses [low risk (LR), intermediate-low risk (Int-Lo), intermediate-high risk (Int-Hi) and high risk (HR) of poor survival) that were validated by survival analysis. To link each prognostic group to pathogenetic features, we generated a random forest (RF) model that extracted invariant genomic features driving each group and resulted in 97% cross-validation accuracy when used for prognostication. The model's globally most important genomic features, quantified by mean decrease in accuracy, included NPM1MT, RUNX1MT, ASXL1MT, SRSF2MT, TP53MT, -5/del(5q), DNMT3AMT, -17/del(17p), BCOR/L1MT and others. The LR group was characterized by the highest prevalence of normal cytogenetics (88%) and NPM1MT (100%; 86% with VAF&gt;20%) with co-occurring DNMT3AMT (52%), FLT3ITD-MT (27%; 91% with VAF &lt;50%), IDH2R140-MT (16%, while absent IDH2R172-MT), and depletion or absence of ASXL1MT, EZH2MT, RUNX1MT, TP53MT and complex cytogenetics. Int-Lo had a higher percentage of abnormal cytogenetics cases than LR, the highest frequency of CEBPABi-MT (9%), IDH2R172K-MT (4%), FLT3ITD-MT (14%) and FLT3TKD-MT (6%) occurring without NPM1MT, while absence of NPM1MT, ASXL1MT, RUNX1MT and TP53MT. Int-Hi had the highest frequency of ASXL1MT (39%), BCOR/L1MT (16%), DNMT3AMT without NPM1MT (19%), EZH2MT (9%), RUNX1MT (52%), SF3B1MT (7%), SRSF2MT (38%) and U2AF1MT (12%). Finally, HR had the highest prevalence of abnormal cytogenetics (96%), -5/del(5q) (68%), -7del(7q) (35%), -17del(17p) (31%) and the highest odds of complex karyotype (76%) as well as TP53MT (70%). The model was then internally and externally validated using a cohort of 203 AML cases from the MD Anderson Cancer Center. The RF prognostication model and group-specific survival estimates will be available via a web-based open-access resource. In conclusion, the heterogeneity inherent in the genomic changes across nearly 7000 AML patients is too vast for traditional prediction methods. Using newer ML methods, however, we were able to decipher a set of prognostic subgroups predictive of survival, allowing us to move AML into the era of personalized medicine. Disclosures Advani: OBI: Research Funding; Abbvie: Research Funding; Macrogenics: Research Funding; Glycomimetics: Consultancy, Other: Steering committee/ honoraria, Research Funding; Immunogen: Research Funding; Seattle Genetics: Other: Advisory board/ honoraria, Research Funding; Amgen: Consultancy, Other: steering committee/ honoraria, Research Funding; Kite: Other: Advisory board/ honoraria; Pfizer: Honoraria, Research Funding; Novartis: Consultancy, Other: advisory board; Takeda: Research Funding. Ravandi:Abbvie: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Astellas: Consultancy, Honoraria, Research Funding; Orsenix: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria; Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding; Xencor: Consultancy, Honoraria, Research Funding; Macrogenics: Research Funding; BMS: Consultancy, Honoraria, Research Funding. Carraway:Novartis: Consultancy, Speakers Bureau; Takeda: Other: Independent Advisory Committe (IRC); Stemline: Consultancy, Speakers Bureau; BMS: Consultancy, Other: Research support, Speakers Bureau; Abbvie: Other: Independent Advisory Committe (IRC); ASTEX: Other: Independent Advisory Committe (IRC); Jazz: Consultancy, Speakers Bureau. Saunthararajah:EpiDestiny: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Kantarjian:Sanofi: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Honoraria, Research Funding; BMS: Research Funding; Abbvie: Honoraria, Research Funding; Aptitute Health: Honoraria; Pfizer: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Jazz: Research Funding; Immunogen: Research Funding; Adaptive biotechnologies: Honoraria; Ascentage: Research Funding; Amgen: Honoraria, Research Funding; BioAscend: Honoraria; Delta Fly: Honoraria; Janssen: Honoraria; Oxford Biomedical: Honoraria. Kadia:Pfizer: Honoraria, Research Funding; Novartis: Honoraria; Cyclacel: Research Funding; Ascentage: Research Funding; Astellas: Research Funding; Cellenkos: Research Funding; JAZZ: Honoraria, Research Funding; Astra Zeneca: Research Funding; Celgene: Research Funding; Incyte: Research Funding; Pulmotec: Research Funding; Abbvie: Honoraria, Research Funding; Genentech: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Amgen: Research Funding. Sekeres:Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda/Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. LBA-6-LBA-6 ◽  
Author(s):  
Farhad Ravandi ◽  
Ellen Ritchie ◽  
Hamid Sayar ◽  
Jeffrey Lancet ◽  
Michael D. Craig ◽  
...  

Abstract Introduction: Despite 40 years of intense clinical research, there remain no new approved treatments or standard of care for patients with relapsed or refractory (R/R) acute myeloid leukemia (AML). New safe and effective salvage treatments are urgently needed. Vosaroxin is a first-in-class anticancer quinolone derivative that is active in AML. Vosaroxin is minimally metabolized, evades P glycoprotein receptor–mediated efflux and has activity independent of p53 status. VALOR is a rigorously designed and conducted phase 3, adaptive design, randomized, double-blind, placebo-controlled trial evaluating vosaroxin plus cytarabine (vos/cyt) vs placebo plus cytarabine (pla/cyt) in patients with R/R AML (NCT01191801). Methods: Patients were randomized 1:1 to receive cytarabine (1 g/m2 IV over 2 hr, d 1-5) plus either vosaroxin (90 mg/m2 IV over 10 min d 1 and 4; 70 mg/m2 in subsequent cycles) or placebo. Up to 2 induction and 2 consolidation cycles were administered. Eligible patients had refractory disease (persistent disease after induction, or first complete remission [CR1] < 90 d) or were in first relapse (early relapse: CR1 of 90 d to 12 mo; late relapse: CR1 of 12 mo to 24 mo). Patients had received 1-2 cycles of prior induction chemotherapy including at least 1 cycle of anthracycline (or anthracenedione) and cytarabine. Randomization was stratified by disease status (refractory, early relapse, late relapse), age (< 60, ≥ 60 years), and geographic location (US, non-US). Primary efficacy and safety endpoints were overall survival (OS) and 30- and 60-day mortality; secondary endpoints were complete remission (CR) rate and incidence of adverse events (AEs). Results: Between Dec 2010 and Sept 2013, 711 patients were randomized to receive vos/cyt (n = 356) or pla/cyt (n = 355) at 124 sites; per the adaptive design, a prespecified 1-time sample size increase of 225 patients was implemented after the interim analysis. At the final analysis, median OS was 7.5 mo (95% CI: 6.4-8.5) with vos/cyt vs 6.1 mo (95% CI: 5.2-7.1) with pla/cyt (HR = 0.866 [95% CI: 0.73-1.02]; 2-sided unstratified log-rank P = 0.06) (Figure). The OS difference was statistically significant in a preplanned analysis accounting for the stratification factors at randomization (2-sided stratified log-rank P = 0.02). Overall, 29.5% of patients underwent allogeneic stem cell transplant (ASCT), including 45.8% of patients < 60 years and 20.2% of patients ≥ 60 years. Transplant rates were comparable between the 2 treatment arms (30.1% with vos/cyt and 29.0% with pla/cyt). In a predefined analysis censoring for subsequent ASCT, median OS was improved with vos/cyt (6.7 mo vs 5.3 mo with pla/cyt; HR = 0.81 [95% CI: 0.67-0.97]; P = 0.02; stratified P = 0.03) (Figure). In predefined subgroup analyses, OS benefit was greatest in patients aged ≥ 60 years (7.1 mo with vos/cyt vs 5.0 mo with pla/cyt; HR = 0.75; P = 0.003) (Figure) and those with early relapse (6.7 mo vs 5.2 mo; HR = 0.77; P = 0.04). OS with vos/cyt vs pla/cyt was 9.1 mo vs 7.9 mo in patients < 60 years (HR = 1.08; P = 0.60); 6.7 mo vs 5.0 mo in patients with refractory disease (HR = 0.87; P = 0.23); and 14.1 mo vs 12.3 mo in patients with late relapse (HR = 0.98; P = 0.96), respectively. A CR was achieved in 30.1% of patients treated with vos/cyt vs 16.3% treated with pla/cyt (P = 0.00001). Thirty-day and 60-day all-cause mortality was similar in the 2 arms (30-day: 7.9% vs 6.6%; 60-day: 19.7% vs 19.4% with vos/cyt vs pla/cyt, respectively). Most common serious AEs were febrile neutropenia (11.3% with vos/cyt vs 7.4% with pla/cyt), sepsis (8.7% vs 4.3%), pneumonia (7.6% vs 4.9%), bacteremia (8.5% vs 2.9%), and stomatitis (3.4% vs 1.4%). Serious and non-serious cardiac, renal, neurologic, and hepatic AEs were comparable between treatment groups. Conclusion: Vos/cyt demonstrated improved OS and higher CR rates in patients with R/R AML without increased early mortality. In the primary OS analysis, the overall clinical benefit associated with vosaroxin may be underestimated, particularly in younger patients, due to the confounding effect of high transplant rates, a methodological limitation of AML trials. Vosaroxin-containing therapy had acceptable tolerability. VALOR results represent one of the largest datasets available in this setting, and the OS benefit was confirmed by a robust sensitivity analysis. These data support the use of this combination as a new option for salvage therapy in patients with R/R AML. Figure 1 Figure 1. Disclosures Ravandi: Sunesis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Sayar:Sunesis: Membership on an entity's Board of Directors or advisory committees, Research Funding. Strickland:Sunesis: Membership on an entity's Board of Directors or advisory committees. Schiller:Sunesis: Membership on an entity's Board of Directors or advisory committees, Research Funding. Erba:Sunesis: Consultancy; Seattle Genetics: Consultancy; Novartis: Consultancy; Incyte: Consultancy; Celgene: Consultancy; Amgen: Consultancy. Pigneux:Sunesis: Consultancy. Horst:Sunesis: Research Funding. Recher:Sunesis: Consultancy; Celgene: Consultancy, Research Funding; Chugai: Research Funding. Klimek:Sunesis: Membership on an entity's Board of Directors or advisory committees, Research Funding. Craig:Sunesis: Equity Ownership. Fox:Sunesis: Consultancy, Equity Ownership. Ward:Sunesis: Employment, Equity Ownership. Smith:Sunesis: Employment, Equity Ownership. Acton:Sunesis: Consultancy. Mehta:Sunesis: Consultancy. Stuart:Sunesis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1261-1261
Author(s):  
Ing S Tiong ◽  
Sun Loo ◽  
Emad Uddin Abro ◽  
Devendra Hiwase ◽  
Shaun Fleming ◽  
...  

Abstract Introduction Rising molecular measurable residual disease (MRD) is an arbiter of clinical relapse in acute myeloid leukemia (AML). Venetoclax (VEN) is active against IDH and NPM1 mutant (mt) AML as monotherapy (Konopleva et al, 2016 and Chua et al, 2020) and can yield MRD negative remission when combined with low dose ara-C (LDAC) in patients unfit for intensive chemotherapy (DiNardo and Tiong et al, 2020). In a retrospective study, we showed that VEN in combination with hypomethylating agents or LDAC could erase rising NPM1mt MRD in 6/7 cases (Tiong et al, 2020). We now present a prospective phase 2 study of VEN and LDAC in patients with molecular MRD failure or oligoblastic AML relapse. Methods This multicenter phase 2 study stratified patients into oligoblastic relapse (marrow blasts 5-15%; Group A), or molecular MRD failure (Group B) as defined by the European LeukemiaNet (ELN) recommendations (failure confirmed by 2 interval samples) (Schuurhuis et al, 2018). Patients received VEN 600 mg (days 1-28) and LDAC 20 mg/m 2 (days 1-10). Primary objectives were morphologic or MRD response (≥1 log reduction) in groups A and B, respectively. Key secondary objectives were allogeneic hematopoietic cell transplantation (allo-HCT) realization and relapse-free (RFS) and overall survival (OS). The study had Alfred Health ethics approval (196/19). NPM1mt and other fusion transcript levels (per 10 5 ABL) from bone marrow were analyzed by RT-qPCR, IDH1 and IDH2 by Bio-Rad TM droplet digital PCR. Results The study enrolled 32 patients, with 29 evaluable (cut-off date 15/7/21). The median age of the study population was 62 years; 79% had intermediate cytogenetic risk, 66% NPM1mt, 11% FLT3-ITD and 37% IDH1/IDH2 mt. Most received prior intensive chemotherapy (93%) and 2 (7%) allo-HCT in first remission. Median interval from AML diagnosis to study entry was 12.6 months (Table 1). After a median follow-up of 7.9 months, patients had received a median of 3 cycles (range 1-14) of VEN-LDAC, with 13 patients ongoing. The main reasons for treatment cessation were allo-HCT (n=10; 34%) or donor lymphocyte infusion (n=2; 7%), treatment failure (n=3) or an adverse event (n=1). Hematologic complete/incomplete response (CR/CRi) among 11 patients with oligoblastic relapse (group A) was 73% and included: CR (n=5, 45%) or CRi (n=3, 27%), with an additional patient with morphologic leukemia-free state and 2 patients with stable disease. Overall, across both groups, median RFS and OS were not reached, estimated at 78% and 91% at 1 year, respectively. Among 18 patients with molecular MRD failure (group B) treated with VEN+LDAC, molecular response (≥1 log reduction) was achieved in 72%, and the RFS and OS were estimated at 83% and 87% at 1 year, respectively. Analysis of a sub-group of patients with NPM1mt (n=18); 6 and 12 from Groups A and B, respectively revealed the median NPM1mt transcript level at study entry to be 8985 copies (IQR 826, 94,431). A molecular response was achieved in 14 (78%) patients, including 9 (50%) with complete molecular remission (CR MRD-), with most responses achieved within 2 cycles of therapy (Figure B). Treatment with VEN-LDAC was generally well tolerated, with 15 serious adverse events reported within the first 2 cycles, including infection (n=6; 19%) and febrile neutropenia (n=3; 9%). Only one subject discontinued treatment due to stroke. Conclusions In this prospective study, in patients with first oligoblastic relapse or MRD failure, VEN in combination with LDAC induced a high rate of molecular MRD remission that was rapidly achieved, resulting in a high rate of survival at 12-months (&gt;90%) and with low toxicity. Follow-up is ongoing to determine the durability of response. Treatment of patients with MRD or early clinical failure may represent an attractive clinical trial setting for investigation of novel, non-intensive AML therapies. This approach will be investigated in a future multi-arm, precision-based platform trial called INTERCEPT (Investigating Novel Therapy to Target Early Relapse and Clonal Evolution as Pre-emptive Therapy in AML). Figure 1 Figure 1. Disclosures Tiong: Servier: Consultancy, Speakers Bureau; Amgen: Speakers Bureau; Pfizer: Consultancy. Hiwase: Novartis: Membership on an entity's Board of Directors or advisory committees; AbbVie: Membership on an entity's Board of Directors or advisory committees. Fleming: Amgen Inc: Research Funding. Bajel: Amgen: Speakers Bureau; Abbvie, Amgen, Novartis, Pfizer: Honoraria. Fong: Amgen, BMS: Speakers Bureau; Amgen: Research Funding; AbbVie, Amgen, Novartis, Pfizer, Astellas: Honoraria. Wei: Celgene/BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Agios: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Genentech: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Astellas: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Macrogenics: Membership on an entity's Board of Directors or advisory committees; Servier: Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: This presentation will discuss the use of venetoclax in targeting measurable residual disease and early relapse of acute myeloid leukemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5089-5089 ◽  
Author(s):  
Varun Mittal ◽  
Mimi Lo ◽  
Lloyd E. Damon ◽  
Karin L. Gaensler ◽  
Thomas G. Martin ◽  
...  

Introduction: Venetoclax (VEN), a selective BCL-2 inhibitor, in combination with hypomethylating agents (HMA) has high efficacy in treatment-naïve elderly patients with acute myeloid leukemia (AML). The role for VEN in patients with relapsed/refractory (R/R) AML, myelodysplastic syndrome (MDS), or other myeloproliferative neoplasms remains incompletely defined. In particular, the efficacy of VEN+HMA has not been studied systematically in patients who experience AML relapse following allogeneic hematopoietic cell transplantation (HCT). Method: All patients treated with VEN+HMA (azacitidine or decitabine) for R/R de novo or secondary AML or progressive MDS following allogeneic HCT were identified and reviewed retrospectively. All included AML patients had overt clinical relapse with ≥ 5% bone marrow blasts or extramedullary disease biopsy proven to be AML. Patients were included in this analysis if they received at least 14 days of VEN therapy. Results: Eleven patients with median age 66 (range 25-75) were treated for R/R AML post-allogeneic HCT. Transplant characteristics included use of reduced intensity conditioning in 10/11 (91%), matched sibling donors in 5/11 (45%), matched unrelated donors in 5/11 (45%), and cord blood in 1/11 patients. The median time from HCT to relapse/disease progression was 7 months (range 3-36). Two patients had extramedullary relapse only, and the remainder had marrow involvement. Eight patients (73%) received azacitidine and 3 (27%) received decitabine in combination with VEN. All but two patients (82%) had prior HMA exposure and most received VEN+HMA as initial post-transplant salvage therapy (64%). Only one patient received donor lymphocyte infusion in conjunction with VEN+HMA therapy, and none proceeded to a second allotransplant. Nine patients (82%) experienced an objective response, which included 4 CR/CRi (36%) and 5 PR/SD (45%). In patients with CR/CRi, three patients had adverse risk cytogenetics and one had a favorable risk profile at diagnosis consisting of normal cytogenetics with an isolated NPM1 mutation. All patients who failed to remit with VEN+HMA had intermediate- or high-risk genetic features. The median number of treatment cycles given was 3 (range 1-20). Median survival was 11 months and estimated 6-month and 12-month survival was 82% and 36%, respectively. Three patients remain alive with median 16.5 months follow-up (range 2.5-32). Conclusion: Venetoclax in combination with HMA is a viable salvage option in patients with relapsed AML or progressive MDS after allogeneic HCT, including those with prior exposure to HMA. Although one patient in this cohort sustained long term complete remission, overall prognosis remains dismal in this high-risk patient population and improved treatment options for relapsed/refractory AML following alloHCT remain needed. Disclosures Damon: Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Martin:Amgen, Sanofi, Seattle Genetics: Research Funding; Roche and Juno: Consultancy. Olin:MedImmune: Research Funding; Ignyta: Research Funding; Clovis: Research Funding; AstraZeneca: Research Funding; Revolution Medicine: Consultancy; Daiichi Sankyo: Research Funding; Astellas: Research Funding; Genentech: Consultancy, Research Funding; Pfizer: Research Funding; Jazz Pharmaceuticals: Consultancy, Honoraria; Novartis: Research Funding; Mirati Therapeutics: Research Funding; Spectrum: Research Funding. Smith:Astellas Pharma: Research Funding; Abbvie: Research Funding; fujiFilm: Research Funding; Revolution Medicines: Research Funding. Logan:Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; Pharmacyclics: Research Funding; Astellas: Research Funding; Jazz: Research Funding; Kite: Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees; TeneoBio: Consultancy; Kiadis: Consultancy; Kadmon: Research Funding; Abbvie: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1695-1695
Author(s):  
Ricardo Pasquini ◽  
Jorge E. Cortes ◽  
Hagop M. Kantarjian ◽  
David Joske ◽  
Luis A Meillon ◽  
...  

Abstract Abstract 1695 Background: A global, prospective registry was established to document the frequency of diagnostic testing, management (mgmt) strategies, and outcomes of patients (pts) with CML. Here, we summarize the reported deviations from published disease mgmt recommendations and the overall efficacy achieved by pts. Methods: 1853 pts (≥ 16 years of age) within 6 months (mo) + 2 weeks of CML diagnosis were enrolled from Latin America (LA; n = 497), United States (US; n = 379), Asia Pacific (AP; n = 465), Middle East and Africa (MEA; n = 209), and Russia and Turkey (RT; n = 303). Baseline demographics and medical history were collected at enrollment; current disease status and mgmt information were collected at approximately 6-mo intervals or with a change in disease status or mgmt. Results: From February 2008 to June 2011, data were available for 1831 (99%) pts. Across all regions, nearly all (93.8%) screened pts were in chronic phase CML. Regardless of the time of evaluation (eval), disease burden was mostly assessed through the use of hematologic counts (Table 1). Cytogenetic testing and molecular monitoring were used in a minority of pts at any timepoint. Hydroxyurea (HU) and imatinib were the first agents used in 61.9% and 29.5% of pts, respectively (Table 2). Overall, 81.1% of pts received imatinib therapy at some time and it was the most common second agent (48.1%) pts received. Among the 49% of pts who had response assessments, subsequent treatment changes occurred most frequently (23.9% of pts) at the 3-mo timepoint (Table 1). The median time from disease eval to dose/regimen modification was 3 days. Of those who received imatinib, 32% had dose modifications primarily for: lack of efficacy (20%), physician request (20%), and adverse events (19%). Of the pts with a corresponding eval at 12 mo after diagnosis, 88% had a CHR, 65.4% had a CCyR, and 42.5% had a MMR (BCR-ABLIS ≤.1%). These data are preliminary; response assessments by treatment, as well as further efficacy analyses, are ongoing. Conclusions: Overall, the majority of pts did not have cytogenetic or BCR-ABL transcript level testing performed per the European LeukemiaNet recommendations. Furthermore, despite availability of more effective therapies for the treatment of CML, HU is still used as a primary therapy in a substantial proportion of pts. Based on this analysis, pts outside the US primarily receive HU as initial therapy rather than tyrosine kinase inhibitors (TKIs). Overall, second-generation TKIs, such as nilotinib and dasatinib, are infrequently used. These results illustrate the need for continuing education on the mgmt of CML in order to improve outcomes for all pts. Disclosures: Pasquini: Bristol Myers Squibb: Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Cortes:Bristol Myers Squibb: Consultancy, Research Funding; Novartis Pharmaceuitcals: Consultancy, Research Funding. Kantarjian:Pfizer: Research Funding; Novartis: Research Funding; Novartis: Consultancy; BMS: Research Funding. Zernovak:Novartis: Employment, Equity Ownership. Sivarathinasami:Novartis: Employment. Collins:Novartis: Employment. Hughes:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees. Kim:BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3955-3955
Author(s):  
Ibrahim Aldoss ◽  
Dongyun Yang ◽  
Zhaohui Gu ◽  
Vanina Tomazian ◽  
Sally Mokhtari ◽  
...  

Abstract Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) represents 20% of newly diagnosed adults with B cell ALL (B-ALL), with increased frequency in adults with Hispanic ethnicity. Ph-like ALL harbors a diverse range of genetic alterations with CRLF2-rearrangement/overexpression (CRLF2r) being the most common one. When treated with chemotherapy, Ph-like ALL is associated with inferior response, high relapse rate, and low overall survival (OS). Allogenic hematopoietic cell transplantation (alloHCT) is a well-established curative modality for adults with high-risk ALL. Considering that Ph-like ALL is a high-risk leukemia subtype, it is appealing to recommend alloHCT consolidation routinely for this entity in adults. However, large datasets describing alloHCT outcomes in patients with Ph-like ALL is lacking. In this study, we retrospectively analyzed archived DNA samples from 125 consecutive adult patients with Ph-negative ALL who underwent alloHCT in complete remission (CR) at our center between 2006 and 2020. Classification of Ph-like versus non-Ph-like was performed according to WHO 2017 classification using accumulative results from RNAseq, conventional cytogenetics, FISH, and whole genome array studies. A proprietary RNA sequencing assay covering 1,188 genomic regions from 235 genes was designed to detect all the clinically significant fusions and expressions for Ph-like ALLs. In addition, an algorithm employing the RNAseq data was developed to further aid in classification of Ph-like ALL. Boruta feature selection (R package "Boruta" version 7.0.0) was used to identify the most informative genes for prediction with an out-of-bag error of 9.62%. The following 24 genes were identified: CCND2, SOX11, PAX5, DENND3, RARA, MME, ID4, SH3BP5, HOXA9, CA6, MUC4, CYB5R2, CD97, EPOR, IL2RA, RAB29, PDGFRA, MLLT4, RHOA, JAK2, DNM2, ASXL1, BCL2A1, and KDR. The results were used to predict Ph-like status by a Random Forest model (R package "randomForest" version 4.6-14) that generates a probability/similarity score of Ph gene expression profile (Ph score). The testing samples with Ph score over 50% and without other subtype-defining lesions are defined as Ph-like. We identified Ph-like genetic alterations in 66 (53%) patients, of whom 42 (66%) were carrying CRLF2r and 24 (36%) were non-CRLF2r. Compared to non-Ph-like ALL (n=59), Ph-like ALL patients were younger (42 vs 36 years old, p=0.022), more frequently Hispanic (56% vs 83%, p=0.003), less frequently carried high-risk cytogenetics (39% vs 9%, p&lt;0.001), more frequently induced with pediatric-inspired regimens (25% vs 61%, p=0.003) and more likely required &gt;1 regimen to achieve their first complete remission (CR1; 30% vs 55%, p=0.025). However, we did not detect any significant difference between the two groups in disease status (CR1 vs. CD2/3; p=0.81) or minimal residual disease clearance at the time of HCT (negative vs. positive; p=0.17), donor type (match related/unrelated vs mismatch vs haplo vs cord blood; p=0.88), conditioning regimen intensity (myeloablative vs non-myeloablative/ reduced intensity; p=0.59), GVHD prophylaxis (tacrolimus/sirolimus-based vs PTCy-based; p=0.84), Karnofsky Performance Status (KPS; p=0.24) or HCT comorbidity index (0 vs 1-2 vs &gt;2; p=0.42). With the median follow-up of 3.2 years, we observed similar 3-years leukemia-free survival (LFS) (40% vs 47%; p=0.95), OS (44% vs 54%; p=0.96), relapse rate (33% vs 34%; p=0.96) and non-relapse mortality (NRM) (27% vs 19%; p=0.92) between non-Ph-like and Ph-like ALL patients, respectively. (Figure) In multivariable analysis, disease status at the time of HCT (HR=2.63, 95% CI: 1.57-4.41; p&lt;0.001), donor type (p=0.049) and KPS (HR=2.22, 95% CI: 1.05-4.69; p=0.038) influenced OS. LFS was significantly influenced by disease status (HR=2.35, 95% CI: 1.45-3.80); p&lt;0.001) and conditioning regimen intensity (HR=1.84, 95% CI: 1.11-3.04; p=0.017). Relapse rate was associated with disease status (HR=2.06, 95%CI: 1.11-3.84; p=0.23) and conditioning regimen intensity (HR=1.97, 95% CI: 1.03-3.75; p=0.40). Only KPS (HR=6.56, 95% CI: 2.48-17.36; P&lt;0.001) was associated with NRM. In conclusion, our data suggest that alloHCT consolidation results in favorable outcomes in adult patients with Ph-like ALL with comparable outcomes to non-Ph-like ALL. Our data support utilization of alloHCT for adults with Ph-like ALL in CR. Figure 1 Figure 1. Disclosures Al Malki: Neximmune: Consultancy; Rigel Pharma: Consultancy; Jazz Pharmaceuticals, Inc.: Consultancy; Hansa Biopharma: Consultancy; CareDx: Consultancy. Khaled: Omeros: Honoraria; Alexion: Honoraria, Speakers Bureau; Janssen: Current Employment; Astellas: Honoraria; Jazz: Honoraria. Ali: Incyte: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BMS: Speakers Bureau; CTI BioPharma: Membership on an entity's Board of Directors or advisory committees. Aribi: Seagen: Consultancy. Mei: BMS: Research Funding; Epizyme: Research Funding; TG Therapeutics: Research Funding; EUSA: Honoraria; Janssen: Honoraria; Morphosys: Research Funding; Beigene: Research Funding. Koller: Novartis: Consultancy. Artz: Radiology Partners: Other: Spouse has equity interest in Radiology Partners, a private radiology physician practice. Stein: Amgen: Consultancy, Speakers Bureau; Celgene: Speakers Bureau; Stemline: Speakers Bureau. Marcucci: Abbvie: Other: Speaker and advisory scientific board meetings; Novartis: Other: Speaker and advisory scientific board meetings; Agios: Other: Speaker and advisory scientific board meetings. Forman: Lixte Biotechnology: Consultancy, Current holder of individual stocks in a privately-held company; Mustang Bio: Consultancy, Current holder of individual stocks in a privately-held company; Allogene: Consultancy. Pullarkat: AbbVie, Amgen, Genentech, Jazz Pharmaceuticals, Novartis, Pfizer, and Servier: Membership on an entity's Board of Directors or advisory committees; Amgen, Dova, and Novartis: Consultancy, Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1811-1811
Author(s):  
Najla H El Jurdi ◽  
Daniel O'Leary ◽  
Fiona He ◽  
Todd E. DeFor ◽  
Armin Rashidi ◽  
...  

Abstract Introduction Allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative treatment for many high-risk hematologic malignancies. Myeloablative conditioning is currently the standard of care for young and fit patients; however, graft-versus-host disease (GVHD) continues to be a major limitation to the success of HCT, increasing post-transplant morbidity and mortality. An ideal HCT is one combining strategies that reduce incidence and severity of GVHD, without compromising graft-versus-tumor effect. We hypothesized that GVHD prophylaxis regimen consisting of post-transplant cyclophosphamide (PTCy), tacrolimus (Tac) and mycophenolate mofetil (MMF) will reduce the incidence of chronic GVHD in patients receiving a standard hematopoietic myeloablative HCT without an increase in risk of malignant relapse. Methods This is an interim analysis of a phase II study using a myeloablative preparative regimen of either: 1. total body irradiation (TBI, total dose 1320 cGy administered twice a day from days -4 to -1) or 2. Busulfan 3.2mg/kg daily (cumulative AUC 19,000 - 21,000 µmol/min/L) plus fludarabine 160mg/m 2 days -5 to -2 for patients unable to receive further radiation, followed by a GVHD prophylaxis regimen of PTCy (50mg/kg days +3 and +4), Tac and MMF (beginning day +5). The primary endpoint is cumulative incidence of chronic GVHD requiring systemic immunosuppressive treatment at 1 year post-transplant. Patient and disease characteristics are detailed in Table 1. Eligibility included: age ≤ 60 years, malignant or non-malignant diagnosis, matched related (MRD) or unrelated (MUD) donor with either a bone marrow (BM) or filgrastim-mobilized peripheral blood (PB) graft. Results Through October 2020 we treated 63 patients with a median follow up of 502 days post-transplant. Of those, 48% were female and n=11 (17%) younger than 18 with median age at HCT of 36 years (range, 2-55; Interquartile range [IQR], 20-48). Donor source was 8/8 MRD in 44 patients (70%), 8/8 MUD in 18 (29%), and one with 7/8 MUD. Graft source was BM in n=28 (44%) and PB in n=35 (56%). Preparative regimen was TBI in 94% of patients. All patients achieved primary neutrophil engraftment by 42 days, median 16 days (range, 13-27). Overall, 94% achieved platelet engraftment by 6 months, median 25 days (range, 16-98). At day 100, 48 patients (86%) achieved full donor bone marrow chimerism (&gt;95% donor DNA); 29 (52%) and 52 (95%) achieved full donor peripheral blood CD3 and CD33 chimerism (defined as &gt;95% donor). 42 patients (66%) required total parenteral nutrition (TPN) for oral mucositis and regimen-related toxicities during their initial transplant admission. Cumulative incidence of Grade II-IV acute GVHD by 100 days post-transplant was 14% overall (95% confidence interval CI: 6-23%), 7% for MRD and 32% for the MUD group; Grade III-IV acute GVHD was 5% overall (CI: 0-10%), similar for both MRD and MUD group. At 1 year, only two patients receiving a PBSC graft developed chronic GVHD requiring immune suppression, for a cumulative incidence of 3% overall, one in the MRD group and one in the MUD group. Two-year cumulative incidence of relapse was estimated at 21% overall, 22% and 16% for the MRD and MUD groups, respectively. Two year cumulative incidence of non-relapse mortality was 13% overall, 15% and 5% for MRD and MUD, respectively. Estimated 2-year overall survival was 79% overall (CI: 65-88%), 75% for the MRD group and 95% for MUD. Estimated 2-year GVHD-free relapse free survival (GRFS) was 57% overall (CI: 42-69%), 56% and 63% in the MRD and MUD groups, respectively. Discussion Myeloablative transplantation with a TBI preparative regimen, followed by a GVHD prophylaxis regimen of PTCy, Tac, and MMF results in very low incidence of chronic GVHD. Importantly, this regimen is feasible and effective for pediatric and adult patients. Further improvement in outcomes can be achieved by incorporating post-transplant relapse mitigating strategies as well as supportive care measures to decrease regimen-related toxicities. Figure 1 Figure 1. Disclosures Arora: Kadmom: Research Funding; Pharmacyclics: Research Funding; Syndax: Research Funding. Janakiram: Bristol Meyer Squibb, Kyowa Kirin, ADCT Therapeutics: Honoraria; FATE, Nektar Therapeutics: Research Funding. Smith: Astellas Gene Therapies: Current Employment. Bachanova: Incyte: Research Funding; KaryoPharma: Membership on an entity's Board of Directors or advisory committees; FATE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gamida Cell: Membership on an entity's Board of Directors or advisory committees, Research Funding. Brunstein: BlueRock: Research Funding; AlloVir: Consultancy; FATE: Research Funding; NANT: Research Funding; GamidaCell: Research Funding. MacMillan: Equilium: Other: DSMB member; Incyte: Consultancy; Jazz Pharmaceuticals: Consultancy. Miller: Sanofi: Membership on an entity's Board of Directors or advisory committees; Magenta: Membership on an entity's Board of Directors or advisory committees; ONK Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Wugen: Membership on an entity's Board of Directors or advisory committees. Betts: Patent Disclosures: Patents & Royalties: B.C.B. holds a patent (WO2015120436A2) related to CD4+ T cell pSTAT3 as a marker and therapeutic target of acute GVHD. B.C.B. additionally holds a provisional patent (WO2017058950A1) related to the use of JAK inhibitors for rejection and GVHD prevention. . Vercellotti: Mitobridge, an Astellas Company: Consultancy, Research Funding; CSL Behring: Research Funding. Weisdorf: Fate Therapeutics: Research Funding; Incyte: Research Funding. Holtan: Generon: Consultancy; Incyte: Consultancy, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2867-2867
Author(s):  
Sabrina Giammarco ◽  
Carmen Di Grazia ◽  
Anna Maria Raiola ◽  
Stefania Bregante ◽  
Riccardo Varaldo ◽  
...  

Abstract Introduction. Hematologic recovery is often not satisfactory in patients undergoing an allogeneic stem cell transplantation (HSCT). A significant proportion have been reported to have low peripheral blood counts, despite full donor chimerism. This condition can be related to several factors including: number of CD34+ cells infused , stem cell source, underlying disease, conditioning regimen, GvHD and viral infections. Recently transplant platforms have changed, including the use of haploidentical transplants and modified GvHD prophylaxis. Aim of the study: to investigate factors associated with hematological recovery following an allogeneic HSCT in current transplant years. Methods: We included 1311 patients, with hematological diseases, undergoing an allogeneic HSCT, between year 2000 and 2020, in two transplant center: Genova and Roma. The main diagnoses were acute leukemia (54%), lymphoproliferative disorders (13%) , myelodysplastic syndromes (9%) and myelofibrosis (9%). 1108 patients aged &lt;60 years and 203 aged &gt;60 years. Platelet counts were taken as a surrogate marker of hematologic recovery. Results: We first ran a multiple regression analysis on factors influencing platelet counts between 50 and 100 days post-transplant. These factors were patients age &gt;60 years, GvHD grade II-IV, non sibling donor and a diagnosis of myelofibrosis. Platelet recovery at different time points, up to over 4 years post-transplant, is shown in Figure 1a in patients stratified according to an age cut off of 60 years. Patients younger than 60 years showed significantly improved platelet recovery , at each time point, when compared to patients over 60 years ; the difference persisted beyond 4 years. There was no difference in platelet recovery in patients aged 18-40 and 41-60. Donor age and year of transplant had no effect on platelet recovery. Figure 1b shows platelet recovery according to risk factors (age, GvHD, myelofibrosis, non sib donor). Transplant related mortality (TRM). We then asked whether low platelet counts predicted TRM. Patients with a platelets count higher than 20 and 50x10^9 on days 50-100 post-HSCT, showed a reduced transplant related mortality (TRM) as compared to patients with a lower platelet count (13%vs 39%: p&lt;0.000001; 11% vs31%, p&lt;0.000001) (Figure 1 c,d). Conclusions: Platelet recovery post-HSCT seems to be strongly influenced by patient's age, together with GvHD, a diagnosis of myelofibrosis and donor type. Slow recovery in older patients remains statistically significant beyond 4 years after HSCT. Hematologic recovery after HSCT has not improved over the past 2 decades. Low platelet counts are a strong risk factor for mortality after allogeneic HSCT. Clinical trials with TPO agonists post HSCT are warranted to assess whether hematologic recovery can be improved, and whether this will translate in reduced mortality. Figure 1 Figure 1. Disclosures Sica: Pfizer: Honoraria. Laurenti: AstraZeneca: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Roche: Honoraria, Research Funding; Gilead: Honoraria; BeiGene: Honoraria. Metafuni: Jazz: Other: Invited Clinical case presentation at meeting. Angelucci: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene BSM: Honoraria, Other: DMC; Blue Bird Bio: Honoraria, Membership on an entity's Board of Directors or advisory committees; Menarini-Stemline: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: steering commitee, Speakers Bureau; Vertex Pharmaceuticals: Honoraria, Other: DMC; Crispr therapeutics: Honoraria, Other: DMC; Glaxo: Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document