scholarly journals Circulating DNA for Molecular Response Prediction, Characterization of Resistance Mechanisms and Quantification of CAR T-Cells during Axicabtagene Ciloleucel Therapy

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 550-550 ◽  
Author(s):  
Brian Sworder ◽  
David M. Kurtz ◽  
Charles Macaulay ◽  
Matthew J. Frank ◽  
Stefan Alig ◽  
...  

Background: Anti-CD19 chimeric antigen receptor (CAR19) T-cells have significant activity in patients with relapsed/refractory DLBCL (rrDLBCL). While the majority of rrDLBCL patients receiving axicabtagene ciloleucel (Axi-cel)achieve complete responses, a significant subset of patients experience disease progression (Locke FL, et al. Lancet Oncol. 2019). Circulating tumor DNA (ctDNA) analysis has demonstrated utility for predicting therapeutic benefit in DLBCL, as well as for detecting emergent resistance mechanisms to targeted therapies. Here we apply cell-free DNA (cfDNA) analysis to patients receiving Axi-cel, to characterize molecular responses, resistance mechanisms, and to track CAR19 cells. Methods: We performed Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) on DNA from germline and plasma samples collected prior to CAR T-cell infusion, multiple time-points post infusion, and, where available, at the time of relapse from 30 patients receiving Axi-cel for rrDLBCL at Stanford University. We designed a novel hybrid-capture panel and analysis pipeline designed to detect both tumor variants, as well as Axi-cel specific recombinant retroviral sequences to quantify CAR19 levels in cfDNA. Tumor variants were identified prior to and following Axi-cel therapy to assess for emergent variants, and Axi-cel specific sequences were quantified. Results: The median follow-up for the 30 patients after Axi-cel infusion was 10 months, with 47% (14/30) of patients experiencing disease progression after Axi-cel therapy. We identified an average of 164.3 SNVs per case (range:1-685) before Axi-cel therapy; the most common coding variants identified at baseline were in MLL2 (29.2%), BCL2 (22.5%), and TP53 (19.3%). When treated as a continuous variable, pretreatment ctDNA levels were prognostic of PFS (HR 2.16, 95% CI 1.11-4.21, P=0.02). Using a previously established ctDNA threshold to stratify disease burden (2.5 log10(hGE/mL); Kurtz et al. JCO 2018), we observed significantly superior PFS in patients with low pretreatment ctDNA levels treated with Axi-cel (Fig. 1A). In the majority of Axi-cel treated patients (62.9%), ctDNA was detectable at day 28, and PFS was significantly longer in patients with undetectable ctDNA at this time-point (Fig. 1B). Multiple putative resistance mechanisms were identified at relapse after Axi-cel, including emergent variants in CD19, HVEM, and TP53, as well as copy number gains in PD-L1 (Fig. 1C). For example, in one patient, a CD19 stop-gain mutation, which was not detected prior to treatment or at the time of the first interim PET scan, emerged at the time of relapse (Fig. 1D). Finally, we found cfDNA evidence for Axi-cel DNA in 74% of patients 28 days after therapy, including in patients without evidence of circulating CAR T-cells in PBMCs. Axi-cel levels in cfDNA as measured by CAPP-Seq were significantly correlated with CAR19 flow cytometry (Pearson r=0.55, P=.015; Fig. 1E). Conclusions: Baseline and interim ctDNA measurements have prognostic significance in DLBCL patients being treated with CAR19 T-cells, and potential emergent resistance mutations, including in CD19, can be identified in patients via cfDNA analysis. Quantification of CAR19 T-cells using cfDNA is significantly correlated with flow cytometric quantification, indicating that these cells can be quantified via cfDNA. Taken together, these data indicate that cfDNA analysis is a powerful tool for predicting response to CAR19 therapy, identifying genomic determinants of resistance and quantifying CAR19 cells, which may in turn inform the next therapeutic steps. Figure 1: A) Kaplan Meier analysis of PFS, with patients stratified based on pre-Axi-cel therapy ctDNA level, above and below a previously established threshold (2.5 log10[haploid Genome Equivalents/mL]). B) A Kaplan Meier plot depicting PFS stratification for patients with detectable versus undetectable ctDNA at day 28 after Axi-cel infusion. C) Oncoprint depicting selected emergent and baseline tumor variants in progressors and non-progressors after Axi-cel therapy. D) Change in mean ctDNA variant allele frequency (VAF) and emergence of a CD19 stop-gain mutation (CD19 pTrpX) at the time of relapse in a patient who initially achieved a CR at day 28 after CAR19 infusion. E) Relationship between CAR19 T-cell quantification by cfDNA and flow cytometry. (ND: Not detected) Disclosures Kurtz: Roche: Consultancy. Chabon:Lexent Bio Inc: Consultancy. Khodadoust:Corvus Pharmaceuticals: Research Funding. Majzner:Xyphos Inc.: Consultancy; Lyell Immunopharma: Consultancy. Mackall:Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board; Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Diehn:Roche: Consultancy; Quanticell: Consultancy; Novartis: Consultancy; AstraZeneca: Consultancy; BioNTech: Consultancy. Miklos:Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Becton Dickinson: Research Funding; AlloGene: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Juno: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees. Alizadeh:Genentech: Consultancy; Janssen: Consultancy; Pharmacyclics: Consultancy; Gilead: Consultancy; Celgene: Consultancy; Chugai: Consultancy; Roche: Consultancy; Pfizer: Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 779-779 ◽  
Author(s):  
Zinaida Good ◽  
Jay Y. Spiegel ◽  
Bita Sahaf ◽  
Meena B. Malipatlolla ◽  
Matthew J. Frank ◽  
...  

Axicabtagene ciloleucel (Axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for the treatment of relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Long-term analysis of the ZUMA-1 phase 1-2 clinical trial showed that ~40% of Axi-cel patients remained progression-free at 2 years (Locke et al., Lancet Oncology 2019). Those patients who achieved a complete response (CR) at 6 months generally remained progression-free long-term. The biological basis for achieving a durable CR in patients receiving Axi-cel remains poorly understood. Here, we sought to identify CAR T-cell intrinsic features associated with CR at 6 months in DLBCL patients receiving commercial Axi-cel at our institution. Using mass cytometry, we assessed expression of 33 surface or intracellular proteins relevant to T-cell function on blood collected before CAR T cell infusion, on day 7 (peak expansion), and on day 21 (late expansion) post-infusion. To identify cell features that distinguish patients with durable CR (n = 11) from those who developed progressive disease (PD, n = 14) by 6 months following Axi-cel infusion, we performed differential abundance analysis of multiparametric protein expression on CAR T cells. This unsupervised analysis identified populations on day 7 associated with persistent CR or PD at 6 months. Using 10-fold cross-validation, we next fitted a least absolute shrinkage and selection operator (lasso) model that identified two clusters of CD4+ CAR T cells on day 7 as potentially predictive of clinical outcome. The first cluster identified by our model was associated with CR at 6 months and had high expression of CD45RO, CD57, PD1, and T-bet transcription factor. Analysis of protein co-expression in this cluster enabled us to define a simple gating scheme based on high expression of CD57 and T-bet, which captured a population of CD4+ CAR T cells on day 7 with greater expansion in patients experiencing a durable CR (mean±s.e.m. CR: 26.13%±2.59%, PD: 10.99%±2.53%, P = 0.0014). In contrast, the second cluster was associated with PD at 6 months and had high expression of CD25, TIGIT, and Helios transcription factor with no CD57. A CD57-negative Helios-positive gate captured a population of CD4+ CAR T cells was enriched on day 7 in patients who experienced progression (CR: 9.75%±2.70%, PD: 20.93%±3.70%, P = 0.016). Co-expression of CD4, CD25, and Helios on these CAR T cells highlights their similarity to regulatory T cells, which could provide a basis for their detrimental effects. In this exploratory analysis of 25 patients treated with Axi-cel, we identified two populations of CD4+ CAR T cells on day 7 that were highly associated with clinical outcome at 6 months. Ongoing analyses are underway to fully characterize this dataset, to explore the biological activity of the populations identified, and to assess the presence of other populations that may be associated with CAR-T expansion or neurotoxicity. This work demonstrates how multidimensional correlative studies can enhance our understanding of CAR T-cell biology and uncover populations associated with clinical outcome in CAR T cell therapies. This work was supported by the Parker Institute for Cancer Immunotherapy. Figure Disclosures Muffly: Pfizer: Consultancy; Adaptive: Research Funding; KITE: Consultancy. Miklos:Celgene: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; AlloGene: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees; Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Becton Dickinson: Research Funding; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees. Mackall:Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 744-744 ◽  
Author(s):  
Liora M Schultz ◽  
Lori S Muffly ◽  
Jay Y. Spiegel ◽  
Sneha Ramakrishna ◽  
Nasheed Hossain ◽  
...  

Introduction: Chimeric antigen receptor (CAR) T cells targeting either CD19 or CD22 have yielded striking complete remission (CR) rates of 70%-90% in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL), but CD19 negative and CD22 low relapse limits the curative potential of these single-antigen CAR T cell approaches. We hypothesized that a bivalent CAR-T construct that can target CD19 and/or CD22 would prevent antigen negative/low relapse. Here we present the combined single institution experience to date of pediatric and adult patients with R/R ALL treated with this novel bispecific CAR. Methods: We conducted parallel Phase I clinical trials of CD19/CD22 bispecific CAR T cells in pediatric and adult patients with relapsed/refractory ALL. We utilized lentiviral transduction of a bivalent CAR construct incorporating the fmc63 CD19 and m971 CD22 single chain variable fragments (scFvs) and a 41BB costimulatory endodomain. After lymphodepletion with fludarabine and cyclophosphamide, patients were infused with fresh or cryopreserved CAR T cells manufactured using a 7-11 day process. Two dose levels were tested during dose escalation: Dose level 1 was 1x106 CAR T cells/kg and dose level 2 was 3x106 cells/kg. Primary objectives assessed the ability to successfully manufacture CAR19/22 CAR T cells and safety while response at Day 28 post-infusion was a secondary objective. Blood, bone marrow and cerebrospinal fluid samples were obtained at protocol defined intervals for correlative biology studies. Results: Nineteen patients have been enrolled (10 pediatric; 9 adult) with a median age of 23 years (range, 2-68) and median of 4 (range, 2-11) prior lines of leukemia-directed therapy. Ten patients received prior HCT, 9 were treated with prior Blinatumomab, 3 with prior CD19 directed CAR T cells and 4 with prior Inotuzumab. Fourteen patients (8 pediatric, 6 adult) have been infused to date with CD19/CD22 bispecific CAR T cells; 7 were treated at dose level 1 (DL1) and 7 at dose level 2 (DL2). Successful manufacturing of cells at target dose levels was achieved in all patients. Twelve patients have reached day 28 and are included in the safety and response analysis presented here. Nine of 12 (75%) experienced cytokine release syndrome (CRS) and 2/12 (17%) developed immune-effector cell neurotoxicity syndrome (ICANS). The CRS and ICANS were all grade 1 or 2 across both dose levels and across pediatric and adult patients except for one adult with high disease burden who experienced grade 4 CRS and grade 4 ICANS, both of which were reversible. No differences in toxicities were seen across the patient age spectrum and there were no cases of treatment-related mortality within 28 days following CAR T infusion. Eleven of 12 (92%) patients achieved a CR, 10 of whom achieved CR at day 28 and one with a PR of extramedullary disease at day 28 which improved to CR by day 180 without further leukemia-directed intervention. One patient had primary progressive disease prior to day 28. Peak CAR expansion as detected by peripheral blood flow cytometry reached a median level of 11.13% (DL1) and 29.1% (DL2) CAR T of CD3+ cells with a range of 0.7-22.54% and 3.8-86.96%, respectively. To date, 3 patients (1 pediatric and 2 adult patients) have relapsed, all with retention of CD19. Post-remission practice differed across pediatric and adult patients; Six pediatric patients reaching day 28 underwent consolidative hematopoietic cell transplantation (HCT) whereas no adult patients received subsequent HCT. One patient died from complications post HCT while in remission. Therefore, the overall survival for all infused patients was 92% with a median follow-up of 9.5 months from time of infusion (range, 1-20). Conclusion: The combined pediatric and adult phase I trials of bispecific CD19/CD22 targeting CAR T cells in relapsed/refractory ALL demonstrates safety and tolerability at two dose levels. Expanded accrual at dose level 2 is ongoing and clinical outcomes will be updated. This work additionally demonstrates feasibility of delivering unified B-ALL CAR T cell therapy across age boundaries. Multi-parametric CyTOF studies permitting CAR T cell phenotyping in conjunction with single cell TCR tracking, proteomics, epigenomics and cytokine profiling are ongoing and will be used to further characterize persisting CAR T cells and define inter-product and inter-patient variability. Disclosures Muffly: Pfizer: Consultancy; KITE: Consultancy; Adaptive: Research Funding. Majzner:Xyphos Inc.: Consultancy; Lyell Immunopharma: Consultancy. Feldman:Octane Biotech, Inc.: Employment; Personalized Medicine Initiative Science: Membership on an entity's Board of Directors or advisory committees. Miklos:Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Juno: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Becton Dickinson: Research Funding; Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees; AlloGene: Membership on an entity's Board of Directors or advisory committees. Mackall:Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board; Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4471-4471
Author(s):  
Liora M Schultz ◽  
Shabnum Patel ◽  
Sneha Ramakrishna ◽  
Alice Bertaina ◽  
Neehar Bhatia ◽  
...  

Following CAR T cell therapy, many patients receive consolidative hematopoietic stem cell transplantation (HSCT), with the available donor pool recently expanding to include genetically engineered cell products. One such example with striking early promise is the α/Β T-cell depleted haploidentical HSCT (α/Β haplo-HSCT) given with bystander α/Β genetically modified T cells, termed BPX-501 cells. These cells are engineered to express an inducible caspase 9 (iCas9) suicide vector that can be activated by the AP1903 (Rimiducid) dimerizing agent in the event of graft-versus-host disease (GVHD) (US NCT03301168). Here, we report the identification of an unexpected dual expressing CD19+/CD3+ T cell subset in a 10 year old patient who underwent apheresis collection for CAR T cell manufacturing upon relapse six months after α/Β haplo-HSCT and BPX-501 cell addback. A leukapheresis product was collected and CD4 and CD8 T cells were selected from this product for CAR transduction using the Miltenyi CliniMACS Prodigy. T cell purity was assessed using flow cytometry. Characterization of his T cell product at this stage revealed an aberrant cell population expressing both surface CD3 and CD19 (Fig 1a) and lacking additional B cell surface markers, excluding leukemic origin of these cells. This patient was the recipient of the described BPX-501 cell product. BPX-501 cells are also engineered to express a truncated version of CD19 to permit tracking of these modified T cells in patients, post-infusion. We hypothesized that these dual positive CD19+/CD3+ cells were the BPX-501 cells derived from his paternal haploidentical donor and still circulating despite leukemia relapse. We utilized the patient's leukapheresis sample to better characterize these cells. Flow cytometry confirmed the presence of this dual positive CD19+/CD3+ population in the apheresis product. We subsequently treated the apheresis product with Rimiducid in vitro and observed elimination of the CD19+/CD3+ cell subset in a dose dependent manner, thus confirming that these cells were BPX-501 cells (Fig 1b). We additionally investigated the fate of the BPX-501 cells following CAR transduction and observed an absence of this subset post-CAR transduction (Fig 1a). Cells co-expressing CD19-targeting CARs and surface CD19 were not observed in the final manufactured product. The most likely explanation for this phenomenon is in vitro fratricide of the CD19+ T cell population by the CD19-specific CAR+ T cells in culture. We aim to bring attention to this cell phenotype that may be recognized with greater frequency as CAR T therapy and engineered α/Β haplo-HSCT are increasingly coupled. We additionally suggest consideration towards using alternative markers to CD19 as a synthetic identifier for post-transplant add-back products, as CD19-expression on effector T cells may complicate subsequent treatment using CD19-directed therapy. Disclosures Majzner: Xyphos Inc.: Consultancy; Lyell Immunopharma: Consultancy; Xyphos Inc.: Consultancy. Mackall:Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board; Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Feldman:Octane Biotech, Inc.: Employment; Personalized Medicine Initiative Science: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3227-3227
Author(s):  
Marzia Capelletti ◽  
Jessica Liegel ◽  
Maria Themeli ◽  
Tuna Mutis ◽  
Dina Stroopinsky ◽  
...  

Introduction: CAR T cells have demonstrated unique potency for tumor cytoreduction and the potential for durable response in patients with advanced hematological malignancies. However, disease relapse remains a significant concern due to the emergence of antigen negative variants, tolerization of CAR T cell populations and lack of T cell persistence. We have developed a personalized cancer vaccine in which patient derived tumor cells are fused with autologous dendritic cells such that a broad array of tumor antigens is expressed in the context of DC mediated co-stimulation. Vaccination of patients with acute leukemia and multiple myeloma has been associated with the durable expansion of tumor specific lymphocytes in the bone marrow and peripheral blood, targeting of residual disease, and durable remission. We postulated that vaccination with DC/tumor fusions would enhance CAR T cell efficacy through the expansion of T cell clonal populations targeting tumor cells via the native TCR and the vaccine mediated enhancement of T cell activation and persistence. In addition, ex vivo engineered CAR T cells provide a substrate of functionally competent T cells with cytoreductive capacity in the setting of advanced disease. In the present study, we examined the potential synergy between CAR T cells targeting CD19 and syngeneic DC/tumor fusions. Methods/Results: CAR T cells and DC/tumor fusions were studied in the context of a murine A20 lymphoma model. CD19 CAR T cells were established through retroviral transduction of a CD19 CAR construct expressing CD28 and 41BBL syngeneic DC/A20 fusions were generated as previously described. Vaccine stimulated T cells were generated by coculturing splenocyte derived T cells with syngeneic DC/A20 fusion cells over a period of three days in a 10:1 ratio in the presence of low dose IL2. While CD19 CAR T cells effectively lysed a subset of A20 cells in a CTL, the addition of vaccine educated T cells increased the percentage of tumor cells undergoing CTL mediated lysis (20% vs 34%). We subsequently examined the interaction of vaccine and CAR T cells ex vivo using the IncuCyte S3 Live-Cell Analysis System which allows for live cell visualization of lysis of A20 cells over time. We studied the impact of combining vaccine educated and CAR T cells as well as an individual T cell population that underwent sequential vaccine mediated stimulation followed by transduction with the CD19 CAR. While vaccine educated and CAR T cells demonstrated potent lysis of A20 cells over time, coculture with either combined vaccine educated and CAR T cells or sequentially vaccine educated and transduced T cells demonstrated the highest levels of cytotoxicity that was maintained over time (1786 and 2338 signal overlap count per image at 23 hours compared to 123 of the control). Enhanced lysis by combined vaccine stimulation and CAR T cells was similarly demonstrated in another tumor cell line, 5TGM1, a multiple myeloma cell line transduced to express CD19. Cytotoxic killing of the 5TGM1-CD19 cells was most pronounced when combining vaccine educated and CAR T cells as compared to CAR T cells alone (33% vs 14%). Consistent with the broad targeting of vaccine educated as compared to the CAR T cell population, wild type 5TGM1 cells were recognized by the DC/tumor fusion stimulated cells in contrast to CAR T cells alone (40% vs. 8%). We subsequently examined the capacity of vaccine educated T cells in conjunction with CAR T cells to target A20 cells in an immunocompetent murine model. Mice were challenged with 1 x 10(6) A20 Mcherry-Luc and lymphoma engraftment was demonstrated at Day 7. Animals were then treated with 3 x 10(6) T cells consisting of CAR T cells, vaccine educated T cells or the combination. Serial bioluminescence imaging demonstrated greatest reduction in tumor burden using combined CAR T and vaccine educated T cells with 4/5 animals without BLI evidence of disease at day 13 after tumor challenge. Conclusions: In in vitro and immunocompetent murine models, we have demonstrated that combined therapy with T cells stimulated by DC/tumor fusions and CAR T cells exhibited potent lysis of murine lymphoma and myeloma cells as compared to the efficacy of CAR T cells or vaccine educated T cells alone. These findings suggest potent synergy between these modalities that may overcome recognized pathways of resistance including the broadening of the tumor specific response and vaccine mediated activation of CAR T cell populations. Disclosures Themeli: Covagen: Consultancy. Mutis:Janssen Research and Development: Research Funding; Celgene: Research Funding; Onkimmune: Research Funding; Genmab: Research Funding. Munshi:Adaptive: Consultancy; Amgen: Consultancy; Oncopep: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Takeda: Consultancy; Abbvie: Consultancy. Kufe:Genus Oncology: Equity Ownership; Reata Pharmaceuticals: Consultancy, Equity Ownership, Honoraria; Nanogen Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Hillstream BioPharma: Equity Ownership; Victa BioTherapeutics: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees; Canbas: Consultancy, Honoraria. Rosenblatt:BMS: Research Funding; Amgen: Other: Advisory Board; Merck: Other: Advisory Board; BMS: Other: Advisory Board ; Parexel: Consultancy; Imaging Endpoint: Consultancy; Partner Tx: Other: Advisory Board; Dava Oncology: Other: Education; Celgene: Research Funding. Sadelain:Fate Therapeutics: Consultancy, Patents & Royalties; Memorial Sloan Kettering Cancer Center: Employment; Juno Therapeutics: Consultancy, Patents & Royalties, Research Funding. Avigan:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partners Tx: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Parexel: Consultancy; Takeda: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1589-1589
Author(s):  
Fabian Frontzek ◽  
Marita Ziepert ◽  
Maike Nickelsen ◽  
Bettina Altmann ◽  
Bertram Glass ◽  
...  

Introduction: The R-MegaCHOEP trial showed that dose-escalation of conventional chemotherapy necessitating autologous stem cell transplantation (ASCT) does not confer a survival benefit for younger patients (pts) with high-risk aggressive B-cell lymphoma in the Rituximab era (Schmitz et al., Lancet Oncology 2012; 13, 1250-1259). To describe efficacy and toxicity over time and document the long-term risks of relapse and secondary malignancy we present the 10-year follow-up of this study. Methods: In the randomized, prospective phase 3 trial R-MegaCHOEP younger pts aged 18-60 years with newly diagnosed, high-risk (aaIPI 2-3) aggressive B-cell lymphoma were assigned to 8 cycles of CHOEP (cyclophosphamide, doxorubcine, vincristine, etoposide, prednisone) or 4 cycles of dose-escalated high-dose therapy (HDT) necessitating repetitive ASCT both combined with Rituximab. Both arms were stratified according to aaIPI, bulky disease, and center. Primary endpoint was event-free survival (EFS). All analyses were calculated for the intention-to-treat population. This follow-up report includes molecular data based on immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) for MYC (IHC: 31/92 positive [40-100%], FISH: 14/103 positive), BCL2 (IHC: 65/89 positive [50-100%], FISH: 23/111 positive) and BCL6 (IHC: 52/86 positive [30-100%], FISH: 34/110 positive) and data on cell of origin (COO) classification according to the Lymph2CX assay (GCB: 53/88; ABC: 24/88; unclassified: 11/88). Results: 130 pts had been assigned to R-CHOEP and 132 to R-MegaCHOEP. DLBCL was the most common lymphoma subtype (~80%). 73% of pts scored an aaIPI of 2 and 27% an aaIPI of 3. 60% of pts had an initial lymphoma bulk and in 40% more than 1 extranodal site was involved. After a median observation time of 111 months, EFS at 10 years was 57% (95% CI 47-67%) in the R-CHOEP vs. 51% in the R-MegaCHOEP arm (42-61%) (hazard ratio 1.3, 95% CI 0.9-1.8, p=0.228), overall survival (OS) after 10 years was 72% (63-81%) vs. 66% (57-76%) respectively (p=0.249). With regard to molecular characterization, we were unable to detect a significant benefit for HDT/ASCT in any subgroup analyzed. In total, 16% of pts (30 pts) relapsed after having achieved a complete remission (CR). 23% of all relapses (7 pts) showed an indolent histology (follicular lymphoma grade 1-3a) and 6 of these pts survived long-term. In contrast, of 23 pts (77%) relapsing with aggressive DLBCL or unknown histology 18 pts died due to lymphoma or related therapy. The majority of relapses occurred during the first 3 years after randomization (median time: 22 months) while after 5 years we detected relapses only in 5 pts (3% of all 190 pts prior CR). 11% of pts were initially progressive (28 pts) among whom 71% (20 pts) died rapidly due to lymphoma. Interestingly, the remaining 29% (8 pts) showed a long-term survival after salvage therapy (+/- ASCT); only 1 pt received allogeneic transplantation. The frequency of secondary malignancies was very similar in both treatment arms (9% vs. 8%) despite the very high dose of etoposide (total 4g/m2)in the R-MegaCHOEP arm. We observed 2 cases of AML and 1 case of MDS per arm. In total 70 pts (28%) have died: 30 pts due to lymphoma (12%), 22 pts therapy-related (11 pts due to salvage therapy) (9%), 8 pts of secondary neoplasia (3%), 5 pts due to concomitant disease (2%) and 5 pts for unknown reasons. Conclusions: This 10-year long-term follow-up of the R-MegaCHOEP trial confirms the very encouraging outcome of young high-risk pts following conventional chemotherapy with R-CHOEP. High-dose therapy did not improve outcome in any subgroup analysis including molecular high-risk groups. Relapse rate was generally low. Pts with aggressive relapse showed a very poor long-term outcome while pts with indolent histology at relapse survived long-term. Secondary malignancies occurred; however, they were rare with no excess leukemias/MDS following treatment with very high doses of etoposide and other cytotoxic agents. Supported by Deutsche Krebshilfe. Figure Disclosures Nickelsen: Roche Pharma AG: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grants; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grant; Janssen: Membership on an entity's Board of Directors or advisory committees. Hänel:Amgen: Honoraria; Celgene: Other: advisory board; Novartis: Honoraria; Takeda: Other: advisory board; Roche: Honoraria. Truemper:Nordic Nanovector: Consultancy; Roche: Research Funding; Mundipharma: Research Funding; Janssen Oncology: Consultancy; Takeda: Consultancy, Research Funding; Seattle Genetics, Inc.: Research Funding. Held:Roche: Consultancy, Other: Travel support, Research Funding; Amgen: Research Funding; Acrotech: Research Funding; MSD: Consultancy; Bristol-Myers Squibb: Consultancy, Other: Travel support, Research Funding. Dreyling:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: scientific advisory board, Research Funding, Speakers Bureau; Bayer: Consultancy, Other: scientific advisory board, Speakers Bureau; Celgene: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Research Funding; Gilead: Consultancy, Other: scientific advisory board, Speakers Bureau; Novartis: Other: scientific advisory board; Sandoz: Other: scientific advisory board; Janssen: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Acerta: Other: scientific advisory board. Viardot:Kite/Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosenwald:MorphoSys: Consultancy. Lenz:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Research Funding; Agios: Research Funding; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bayer: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Roche: Employment, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy. Schmitz:Novartis: Honoraria; Gilead: Honoraria; Celgene: Equity Ownership; Riemser: Consultancy, Honoraria.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 742-742 ◽  
Author(s):  
Eric L Smith ◽  
Sham Mailankody ◽  
Arnab Ghosh ◽  
Reed Masakayan ◽  
Mette Staehr ◽  
...  

Abstract Patients with relapsed/refractory MM (RRMM) rarely obtain durable remissions with available therapies. Clinical use of BCMA targeted CAR T cell therapy was first reported in 12/2015 for RRMM, and based on small numbers, preliminary results appear promising. Given that host immune anti-murine CAR responses have limited the efficacy of repeat dosing (Turtle C. Sci Trans Med 2016), our goal was to develop a human BCMA targeted CAR T cell vector for clinical translation. We screened a human B cell derived scFv phage display library containing 6x1010 scFvs with BCMA expressing NIH 3T3 cells, and validated results on human MM cell lines. 57 unique and diverse BCMA specific scFvs were identified containing light and heavy chain CDR's each covering 6 subfamilies, with HCDR3 length ranges from 5-18 amino acids. 17 scFvs met stringent specificity criteria, and a diverse set was cloned into CAR vectors with either a CD28 or a 4-1BB co-stimulatory domain. Donor T cells transduced with BCMA targeted CAR vectors that conveyed particularly desirable properties over multiple in vitro assays, including: cytotoxicity on human MM cell lines at low E:T ratios (>90% lysis, 1:1, 16h), robust proliferation after repeat antigen stimulation (up to 700 fold, stimulation q3-4d for 14d), and active cytokine profiling, were selected for in vivo studies using a marrow predominant human MM cell line model in NSG mice. A single IV injection of CAR T cells, either early (4d) or late (21d) after MM engraftment was evaluated. In both cases survival was increased when treated with BCMA targeted CAR T cells vs CD19 targeted CAR T cells (median OS at 60d NR vs 35d p<0.05). Tumor and CAR T cells were imaged in vivo by taking advantage of luciferase constructs with different substrates. Results show rapid tumor clearance, peak (>10,000 fold) CAR T expansion at day 6, followed by contraction of CAR T cells after MM clearance, confirming the efficacy of the anti-BCMA scFv/4-1BB containing construct. Co-culture with primary cells from a range of normal tissues did not activate CAR T cells as noted by a lack of IFN release. Co-culture of 293 cells expressing this scFv with those expressing a library of other TNFRSF or Ig receptor members demonstrated specific binding to BCMA. GLP toxicity studies in mice showed no unexpected adverse events. We generated a retroviral construct for clinical use including a truncated epithelial growth factor receptor (EGFRt) elimination gene: EGFRt/hBCMA-41BBz. Clinical investigation of this construct is underway in a dose escalation, single institution trial. Enrollment is completed on 2/4 planned dose levels (DL). On DL1 pts received cyclophosphamide conditioning (3g/m2 x1) and 72x106 mean CAR+ T cells. On DL2 pts received lower dose cyclophosphamide/fludarabine (300/30 mg/m2 x3) and 137x106 mean CAR+ T cells. All pts screened for BCMA expression by IHC were eligible. High risk cytogenetics were present in 4/6 pts. Median prior lines of therapy was 7; all pts had IMiD, PI, high dose melphalan, and CD38 directed therapies. With a data cut off of 7/20/17, 6 pts are evaluable for safety. There were no DLT's. At DL1, grade 1 CRS, not requiring intervention, occurred in 1/3 pts. At DL2, grade 1/2 CRS occurred in 2/3 pts; both received IL6R directed Tocilizumab (Toci) with near immediate resolution. In these 2 pts time to onset of fever was a mean 2d, Tmax was 39.4-41.1 C, peak CRP was 25-27mg/dl, peak IL6 level pre and post Toci were 558-632 and 3375-9071 pg/ml, respectively. Additional serum cytokines increased >10 fold from baseline in both pts include: IFNg, GM CSF, Fractalkine, IL5, IL8, and IP10. Increases in ferritin were limited, and there were no cases of hypofibrinogenemia. There were no grade 3-5 CRS and no neurotoxicities or cerebral edema. No pts received steroids or Cetuximab. Median time to count recovery after neutropenia was 10d (range 6-15d). Objective responses by IMWG criteria after a single dose of CAR T cells were observed across both DLs. At DL1, of 3 pts, responses were 1 VGPR, 1 SD, and 1 pt treated with baseline Mspike 0.46, thus not evaluable by IMWG criteria, had >50% reduction in Mspike, and normalization of K/L ratio. At DL2, 2/2 pts had objective responses with 1 PR and 1 VGPR (baseline 95% marrow involvement); 1 pt is too early to evaluate. As we are employing a human CAR, the study was designed to allow for an optional second dose in pts that do not reach CR. We have treated 2 pts with a second dose, and longer follow up data is pending. Figure 1 Figure 1. Disclosures Smith: Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: BCMA targeted CAR T cells, Research Funding. Almo: Cue Biopharma: Other: Founder, head of SABequity holder; Institute for Protein Innovation: Consultancy; AKIN GUMP STRAUSS HAUER & FELD LLP: Consultancy. Wang: Eureka Therapeutics Inc.: Employment, Equity Ownership. Xu: Eureka Therapeutics, Inc: Employment, Equity Ownership. Park: Amgen: Consultancy. Curran: Juno Therapeutics: Research Funding; Novartis: Consultancy. Dogan: Celgene: Consultancy; Peer Review Institute: Consultancy; Roche Pharmaceuticals: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liu: Eureka Therpeutics Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Brentjens: Juno Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 392-392 ◽  
Author(s):  
Shira Orr ◽  
Marzia Capelletti ◽  
Haider Ghiasuddin ◽  
Dina Stroopinsky ◽  
Jessica Liegel ◽  
...  

Introduction: We have pioneered a personalized cancer vaccine in which patient derived tumor cells are fused with autologous dendritic cells (DCs) such that a broad array of shared and neo-tumor antigens is presented in the context of DC mediated co-stimulation, limiting the risk of antigen escape. In clinical trials of patients with hematologic malignancies, vaccination with DC/tumor fusions induced an expansion of tumor-specific T cells, and resulted in prolonged remissions in a subset of patients. In the current study, we have developed a novel second generation vaccine, whereby a DC/lymphoma fusion vaccine is presented in the context of a unique biomatrix that expresses high levels of the 41BB costimulatory molecule, to further accentuate T cell activation and prevent the establishment of tumor tolerance. In this study, we demonstrate efficacy of DC/lymphoma fusion cell vaccination in a preclinical lymphoma model, and show enhanced potency of the second-generation vaccine. Methods/Results: We first demonstrated the potency of the DC/tumor fusion vaccine in generating anti-tumor immunity in the A20 lymphoma model. Murine DC/A20 fusions were generated from bone marrow derived mononuclear cells cultured with GM-CSF and IL-4 then fused to syngeneic A20 lymphoma cells. DC/A20 fusion cells effectively induced tumor specific immunity as manifested by potent lysis of A20 T cells in vitro as compared to unstimulated T cells in a standard CTL assay. Consistent with this observation, vaccination with DC/A20 fusions effectively induced lymphoma specific immunity in an immunocompetent murine model. Balb/C mice (30 animals) underwent IV inoculation with 750,000 syngeneic, luciferase and mCherry transduced, A20 cells. 24 hours after tumor cells challenge, 15 mice were treated subcutaneously with 105 DC/A20 fusions. Tumor burden was detected using BLI imaging. 10 days post inoculation, within the untreated cohort all 15/15 mice had detectable tumor whereas within the treated group, 5 mice did not demonstrate any evidence of disease and 5 mice demonstrated minimal disease. We subsequently demonstrated that patient derived autologous DC/lymphoma fusions stimulated T cell mediated lysis of primary lymphoma cells. DC were generated from patient derived peripheral blood mononuclear cells cultured with GM-CSF and IL-4 and matured with TNFa. Primary lymphoma cells were isolated from resected tumor and fused with DC at a ratio of 10:1. Fusion stimulated T cells potently lysed autologous tumor cells as compared to unstimulated T cells (25.7% as compared to 12.66%) in a standard CTL assay. To further enhance vaccine potency, we developed a biomatrix substrate expressing the costimulatory molecule 41BB. Using carbodiimide chemistry we covalently bonded RGD peptide and 41BBL protein to an alginate (Alg)-based scaffold. The Alg/RGD/41BBL scaffold can serve as a supporting microenvironment for the co-culture of T cells and fusion vaccine. We cultured syngeneic T cells with DC/A20 fusion vaccine within a scaffold with or without bound 41BBL and examined the T cells cytotoxicity by a CTL assay as described above. Vaccine mediated stimulation of T cells in the context of the Alg/RGD/41BBL scaffold demonstrated higher levels of tumor lysis as compared to the percent T cells cultured within an Alg/RGD scaffold (22.95% and 13.95% respectively). Conclusion: In the current study we assessed the efficacy of the DC/Lymphoma fusion vaccine to elicit a tumor specific immune response. We succeeded in demonstrating the capacity of DC/Lymphoma fusion vaccine to generate tumor specific T cell cytotoxicity in vitro as well as in vivo in an immunocompetent murine model. Accordingly, we presented patient derived primary tumor results supporting the applicable nature of the DC/Lymphoma vaccine in lymphoma patients. In addition, we developed a second-generation fusion vaccine comprised of the original DC/Tumor vaccine presented to the T cells in an Alg/RGD/41BBL scaffold acting as a nurturing microenvironment for T cell immune specific response against the tumor cells. Our initial results exhibit promising potential and an in vivo experiment with the second-generation fusion vaccine is ongoing. Disclosures Arnason: Celgene/Juno: Consultancy; Regeneron Pharmaceuticals, Inc.: Consultancy. Kufe:Nanogen Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Genus Oncology: Equity Ownership; Reata Pharmaceuticals: Consultancy, Equity Ownership, Honoraria; Hillstream BioPharma: Equity Ownership; Victa BioTherapeutics: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees; Canbas: Consultancy, Honoraria. Rosenblatt:Dava Oncology: Other: Education; BMS: Research Funding; Partner Tx: Other: Advisory Board; Merck: Other: Advisory Board; Parexel: Consultancy; Imaging Endpoint: Consultancy; Celgene: Research Funding; BMS: Other: Advisory Board ; Amgen: Other: Advisory Board. Avigan:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partners Tx: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Parexel: Consultancy; Takeda: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2426-2426
Author(s):  
Nicole McLaughlin ◽  
Jonas Paludo ◽  
Yucai Wang ◽  
David J. Inwards ◽  
Nora Bennani ◽  
...  

Abstract Background: While extranodal involvement by mantle cell lymphoma (MCL) is relatively common, involvement of the central nervous system (CNS) is rare (<5% of cases), with limited treatment options. We report the outcomes of 36 patients (pts) with CNS involvement compared to 72 matched control MCL pts without CNS involvement. Methods: MCL pts with CNS involvement seen at Mayo Clinic between 1/1995-9/2020 were identified using the Mayo Data Explorer tool. CNS involvement was defined by tissue biopsy confirmed CNS MCL, CSF analysis demonstrating lymphoma cells, and/or neuroimaging findings compatible with CNS involvement. A 2:1 control group of MCL pts without CNS involvement, matched by age (+/- 2 years) and year of diagnosis (+/- 1 year), was selected among all MCL cases. Medical records were reviewed for baseline characteristics, treatment modalities, and outcomes. Kaplan-Meier method was used for time to event analysis. Wilcoxon test was used to compare continuous variables and Chi square test was used for categorical variables. Results: Out of 1,753 pts with MCL, 36 (2%) had evidence of CNS involvement, including 4 pts with CNS involvement at initial MCL diagnosis. Baseline characteristics of pts with CNS involvement (CNS MCL group) and those without CNS involvement (control group) are shown in Table 1. At MCL diagnosis, non-CNS extranodal involvement was seen in 30 (83%) pts in the CNS MCL group (24 pts with 1 site and 6 pts with ≥ 2 sites), with bone marrow being the most common extranodal site of involvement (n=24, 67%). For the control group, 54 (75%) pts had extranodal involvement (44 pts with 1 site and 10 pts with ≥ 2 sites), and bone marrow was also the most common extranodal site of involvement (n=50, 69%). Notably, advanced stage disease (stage 3-4) was more commonly seen in the CNS MCL group (n=32, 97%) than in the control group (n=59, 83%) (p=0.04) at MCL diagnosis. Blastoid variant was present in a higher proportion of pts in the CNS MCL group (n=11, 31%) compared to the control group (n=8, 11%) (p=0.02). The CNS MCL group also presented with a higher median serum LDH at diagnosis (239 U/L [range 153-1901] vs. 187 U/L [range 124-588], p=0.02), and higher Ki-67 (40% [range 15-100] vs. 30% [range 10-90], p=0.04) compared to the control group. The most common frontline treatment regimen was anthracycline-based therapies (i.e. R-CHOP, Nordic regimen, R-hyperCVAD) for both groups (58% in CNS MCL group and 56% in control group). 14 (39%) pts in the CNS MCL group underwent autologous stem cell transplant in CR1 vs. 31 pts (43%) in the control group. Similar use of rituximab maintenance was seen in both groups (31% in CNS MCL group and 25% in control group). Median total lines of therapy from initial MCL diagnosis was 3 (range 1-9) in CNS MCL group and 2 (range 1-9) in the control group. The median follow-up from MCL diagnosis was 134 months (95% CI:119-163) for the entire cohort. Median OS from MCL diagnosis was 50.3 months (95% CI: 20.9-71.1) for the CNS MCL group compared to 97.1 months (95% CI: 82.6-192.7; p=<0.001) for the control group (Figure 1). Median time from MCL diagnosis to CNS involvement was 25 months (range 0-167). Median OS from CNS involvement was 4.7 months (95% CI: 2.3-6.7). At last follow up, 31 (86%) pts were deceased from the CNS MCL group, compared to 38 (52%) pts in the control group. For the CNS MCL group, the causes of death were CNS lymphoma in 10 (32%) pts, systemic lymphoma in 9 (29%) pts, treatment-related complication in 7 (23%) pts, and other/unknown in 5 (16%) pts. For the control group, the causes of death were systemic lymphoma in 15 (39%) pts, treatment-related in 2 (5%) pts, and other/unknown in 21 (55%) pts. Conclusion: In pts with MCL, CNS involvement is associated with worse outcomes as evident by a shorter median OS from initial MCL diagnosis (50 months vs. 97 months). Involvement of the CNS by lymphoma is an important contributor for the shorter OS as suggested by the median OS of only 5 months from CNS involvement. Advanced stage, blastoid variant, elevated LDH, and elevated Ki67 at MCL diagnosis were features more commonly seen in the CNS MCL cohort. Validation of risk factors at initial MCL diagnosis associated with CNS involvement and exploring the role of CNS prophylaxis are important topics for further investigation. Figure 1 Figure 1. Disclosures Paludo: Karyopharm: Research Funding. Wang: Novartis: Research Funding; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees; MorphoSys: Research Funding; InnoCare: Research Funding; Eli Lilly: Membership on an entity's Board of Directors or advisory committees; LOXO Oncology: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Research Funding. Bennani: Purdue Pharma: Other: Advisory Board; Daichii Sankyo Inc: Other: Advisory Board; Kyowa Kirin: Other: Advisory Board; Vividion: Other: Advisory Board; Kymera: Other: Advisory Board; Verastem: Other: Advisory Board. Nowakowski: Celgene, MorphoSys, Genentech, Selvita, Debiopharm Group, Kite/Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene, NanoString Technologies, MorphoSys: Research Funding. Witzig: Karyopharm Therapeutics, Celgene/BMS, Incyte, Epizyme: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene/BMS, Acerta Pharma, Kura Oncology, Acrotech Biopharma, Karyopharm Therapeutics: Research Funding. Habermann: Seagen: Other: Data Monitoring Committee; Tess Therapeutics: Other: Data Monitoring Committee; Incyte: Other: Scientific Advisory Board; Morphosys: Other: Scientific Advisory Board; Loxo Oncology: Other: Scientific Advisory Board; Eli Lilly & Co.,: Other: Scientific Advisor. Ansell: Bristol Myers Squibb, ADC Therapeutics, Seattle Genetics, Regeneron, Affimed, AI Therapeutics, Pfizer, Trillium and Takeda: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3184-3184 ◽  
Author(s):  
Caitlin L. Costello ◽  
Tara K. Gregory ◽  
Syed Abbas Ali ◽  
Jesus G. Berdeja ◽  
Krina K. Patel ◽  
...  

P-BCMA-101 is a novel chimeric antigen receptor (CAR)-T cell product targeting B Cell Maturation Antigen (BCMA). P-BCMA-101 is produced using the piggyBac® (PB) DNA Modification System instead of the viral vector that is used with most CAR-T cells, requiring only plasmid DNA and mRNA. This makes it less costly and produces cells with a high percentage of the favorable T stem cell memory phenotype (TSCM). The higher cargo capacity of PB permits the incorporation of multiple genes in addition to CAR(s), including a safety switch allowing for rapid CAR-T cell elimination with a small molecule drug infusion in patients if desired, and a selection gene allowing for enrichment of CAR+ cells. Rather than using a traditional antibody-based binder, P-BCMA-101 has a Centyrin™ fused to a CD3ζ/4-1BB signaling domain. Centyrins are fully human proteins with high specificity and a large range of binding affinities, but are smaller, more stable and potentially less immunogenic than traditional scFv. Cumulatively, these features are predicted to result in a greater therapeutic index. A Phase 1, 3+3 dose escalation from 0.75 to 15 x 106 P-BCMA-101 CAR-T cells/kg (RP2D 6-15 x 106 cells/kg) was conducted in patients with r/r MM (Blood 2018 132:1012) demonstrating excellent efficacy and safety of P-BCMA-101, including notably low rates and grades of CRS and neurotoxicity (maximum Grade 2 without necessitating ICU admission, safety switch activation or other aggressive measures). These results supported FDA RMAT designation and initiation of a pivotal Phase 2 study. A Phase 2 pivotal portion of this study has recently been designed and initiated (PRIME; NCT03288493) in r/r MM patients who have received at least 3 prior lines of therapy. Their therapy must have contained a proteasome inhibitor, an IMiD, and CD38 targeted therapy with at least 2 of the prior lines in the form of triplet combinations. They must also have undergone ≥2 cycles of each line unless PD was the best response, refractory to the most recent line of therapy, and undergone autologous stem cell transplant or not be a candidate. Patients are required to be >=18 years old, have measurable disease by International Myeloma Working Group criteria (IMWG; Kumar 2016), adequate vital organ function and lack significant autoimmune, CNS and infectious diseases. No pre-specified level of BCMA expression is required, as this has not been demonstrated to correlate with clinical outcomes for P-BCMA-101 and other BCMA-targeted CAR-T products. Interestingly, unlike most CAR-T products patients may receive P-BCMA-101 after prior CAR-T cells or BCMA targeted agents, and may be multiply infused with P-BCMA-101. Patients are apheresed to harvest T cells, P-BCMA-101 is then manufactured and administered to patients as a single intravenous (IV) dose (6-15 x 106 P-BCMA-101 CAR-T cells/kg) after a standard 3-day cyclophosphamide (300 mg/m2/day) / fludarabine (30 mg/m2/day) conditioning regimen. One hundred patients are planned to be treated with P-BCMA-101. Uniquely, given the safety profile demonstrated during Phase 1, no hospital admission is required and patients may be administered P-BCMA-101 in an outpatient setting. The primary endpoints are safety and response rate by IMWG criteria. With a 100-subject sample, the Phase 2 part of the trial will have 90% power to detect a 15-percentage point improvement over a 30% response rate (based on that of the recently approved anti-CD38 antibody daratumumab), using an exact test for a binomial proportion with a 1-sided 0.05 significance level. Multiple biomarkers are being assessed including BCMA and cytokine levels, CAR-T cell kinetics, immunogenicity, T cell receptor diversity, CAR-T cell and patient gene expression (e.g. Nanostring) and others. Overall, the PRIME study is the first pivotal study of the unique P-BCMA-101 CAR-T product, and utilizes a number of novel design features. Studies are being initiated in combination with approved therapeutics and earlier lines of therapy with the intent of conducting Phase 3 trials. Funding by Poseida Therapeutics and the California Institute for Regenerative Medicine (CIRM). Disclosures Costello: Takeda: Honoraria, Research Funding; Janssen: Research Funding; Celgene: Consultancy, Honoraria, Research Funding. Gregory:Poseida: Research Funding; Celgene: Speakers Bureau; Takeda: Speakers Bureau; Amgen: Speakers Bureau. Ali:Celgene: Research Funding; Poseida: Research Funding. Berdeja:Amgen Inc, BioClinica, Celgene Corporation, CRISPR Therapeutics, Bristol-Myers Squibb Company, Janssen Biotech Inc, Karyopharm Therapeutics, Kite Pharma Inc, Prothena, Servier, Takeda Oncology: Consultancy; AbbVie Inc, Amgen Inc, Acetylon Pharmaceuticals Inc, Bluebird Bio, Bristol-Myers Squibb Company, Celgene Corporation, Constellation Pharma, Curis Inc, Genentech, Glenmark Pharmaceuticals, Janssen Biotech Inc, Kesios Therapeutics, Lilly, Novartis, Poseida: Research Funding; Poseida: Research Funding. Patel:Oncopeptides, Nektar, Precision Biosciences, BMS: Consultancy; Takeda, Celgene, Janssen: Consultancy, Research Funding; Poseida Therapeutics, Cellectis, Abbvie: Research Funding. Shah:University of California, San Francisco: Employment; Genentech, Seattle Genetics, Oncopeptides, Karoypharm, Surface Oncology, Precision biosciences GSK, Nektar, Amgen, Indapta Therapeutics, Sanofi: Membership on an entity's Board of Directors or advisory committees; Indapta Therapeutics: Equity Ownership; Celgene, Janssen, Bluebird Bio, Sutro Biopharma: Research Funding; Poseida: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Nkarta: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kite: Consultancy, Membership on an entity's Board of Directors or advisory committees; Teneobio: Consultancy, Membership on an entity's Board of Directors or advisory committees. Ostertag:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Martin:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Ghoddusi:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Shedlock:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Spear:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Orlowski:Poseida Therapeutics, Inc.: Research Funding. Cohen:Poseida Therapeutics, Inc.: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5485-5485
Author(s):  
Massimo Gentile ◽  
Gianluigi Reda ◽  
Francesca Romana Mauro ◽  
Paolo Sportoletti ◽  
Luca Laurenti ◽  
...  

The CLL-IPI score, which combines genetic, biochemical, and clinical parameters, represents a simple worldwide model able to refine risk stratification for CLL patients. This score, developed in the era of chemo-immunotherapy, has not been gauged extensively in R/R-CLL patients treated with novel targeted agents, such as BCR and BCL2 inhibitors. Soumerai et al (Lancet Hematol 2019) assembled a novel risk model for OS in the setting of R/R-CLL receiving targeted therapies in clinical trials. This model, consisting of four accessible markers (β2M, LDH, Hb, and time from initiation of last therapy; BALL score), is able to cluster 3 groups of CLL patients with significantly different OS. This multicenter, observational retrospective study aimed to validate the proposed Soumerai (BALL) and/or CLL-IPI scores for R/R-CLL real-world patients treated with idelalisib and rituximab (IDELA-R). The primary objectives were to determine whether: i) the CLL-IPI retains its prognostic power also in R/R patients treated with IDELA-R; ii) the BALL score is of prognostic value for IDELA-treated R/R-CLL patients, and iii) the BALL score is predictive of PFS. This study, sponsored by Gilead (ISR#IN-IT-312-5339), included CLL patients collected from 12 Italian centers, who received IDELA-R (idelalisib 150 mg b.i.d. and a total of 8 rituximab infusions intravenously) outside clinical trials as salvage therapy with available data for the calculation of the CLL-IPI and BALL scores at the time of treatment start. OS was estimated for all subgroups of both scores. Additionally, risk-specific PFS was assessed. Kaplan-Meier curve, log-rank test, and Cox regression analyses were performed. The prognostic accuracy of the predictive model was assessed by Harrell's C-index. Overall, 120 CLL patients were included in this analysis. The majority of patients were Binet stage B and C (94.2%). The median age was 75 years and 83 cases (69.2%) were male. The median number of previous therapies was 3 (range 1-9) Baseline patient features are listed in Table 1. After a median follow-up of 1.6 years (1 month to 5.8 years), 33 patients had died and 39 experienced an event (death or progression). CLL-IPI scoring (115/120 evaluable cases) indicated that 6 patients (5.2%) were classified as low-risk, 24 (20.9%) as intermediate-risk, 58 (50.4%) as high-risk, and 27 (23.5%) as very high-risk. Stratification of patients according to the CLL-IPI score did not allow prediction of significant differences in OS. Thus, low-risk patients had a 2-year OS probability of 75% (HR=1), with an intermediate-risk of 68% (HR=2.9, 95%CI 0.37-23.3, P=0.3), high-risk of 83% (HR=1.58, 95%CI 0.2-12.5, P=0.66), and very high-risk of 63% (HR=5.9, 95%CI 0.78-45.2, P=0.86). Next, we tested a modified CLL-IPI by assigning a more balanced score to the original CLL-IPI variables (Soumerai et al, Leukemia Lymphoma 2019), partially overlapping previous results. Specifically, modified CLL-IPI high-risk group showed a significantly different OS as compared with intermediate- and low-risk groups. However, differently from the original report no difference was observed between low- and intermediate-risk). According to the BALL score (120/120 evaluable cases), 33 patients (27.5%) were classified as low-risk, 68 (56.7%) as intermediate-risk, and 19 (15.8%) as high-risk. Stratification of patients according to the BALL score predicted significant differences in terms of OS. Thus, low-risk patients had a 2-year OS probability of 92% (HR=1), intermediate-risk of 76% (HR=5.47, 95%CI 1.3-23.7, P=0.023), and high-risk of 54% (HR=15.1, 95%CI 3.4-67, P<0.0001) (Figure 1). Harrell's C-statistic was 0.68 (P<0.001) for predicting OS. To note, BALL score failed to significantly stratify patients in terms of PFS. As for Soumerai et al (Leukemia Lymphoma 2019), the original CLL-IPI score did not retain discriminative power in term of OS in R/R-CLL patients receiving IDELA-R. The modified CLL-IPI failed to stratify low- and intermediate-risk groups, likely due to the number of cases analysed in the current cohort and the heterogeneous IDELA-containing regimens included in the Soumerai study (Soumerai et al, Leukemia Lymphoma 2019). The CLL-IPI was designed for CLL patients treated with first-line chemo-immunotherapy. Herein, we confirm the prognostic power of the BALL score in this real-world series for OS, while losing the predictive impact of patient outcomes in terms of PFS. Disclosures Mauro: Gilead: Consultancy, Research Funding; Jannsen: Consultancy, Research Funding; Shire: Consultancy, Research Funding; Abbvie: Consultancy, Research Funding; Roche: Consultancy, Research Funding. Coscia:Abbvie: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Karyopharm Therapeutics: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Varettoni:ABBVIE: Other: travel expenses; Roche: Consultancy; Janssen: Consultancy; Gilead: Other: travel expenses. Rossi:Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Honoraria, Other: Scientific advisory board; Janseen: Honoraria, Other: Scientific advisory board; Roche: Honoraria, Other: Scientific advisory board; Astra Zeneca: Honoraria, Other: Scientific advisory board. Gaidano:AbbVie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Sunesys: Consultancy, Honoraria; Astra-Zeneca: Consultancy, Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document