scholarly journals AZD4320 Is a Novel and Potent BCL-2/XL Dual Inhibitor in Targeting Aggressive Mantle Cell Lymphoma

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 44-44
Author(s):  
Yijing Li ◽  
Yang Liu ◽  
Joseph McIntosh ◽  
Alexa A Jordan ◽  
Angela Leeming ◽  
...  

Introduction: Mantle cell lymphoma (MCL) is a rare subtype of B-cell non-Hodgkin's lymphoma. It is an incurable disease with frequent relapse from chemotherapies, targeted therapies, and cell therapies. Dysregulated expression of BCL-2 family members resulting in enhanced cell survival frequently occurs in many cancer types and often contributes to the development of therapeutic resistance. The BCL-2 inhibitor venetoclax has been shown to be effective in treating refractory/relapsed MCL patients. However, resistance often occurs and one of the underlying mechanisms of this resistance is the increased expression of other anti-apoptotic BCL-2 family members, such as BCL-XL and MCL-1. In this study, we assessed the in vitro and in vivo efficacy of a novel and highly potent BCL-2/XL dual inhibitor AZD4320 in preclinical models. Methods: Cell viability assay was tested after 72-hour treatment with AZD4320 in a panel of ibrutinib/venetoclax-sensitive and -resistant MCL cell lines by CellTiter-Glo (Promega). The assay was also done after a 24-hour treatment in primary PDX cells. Cell apoptosis assay was performed to determine if AZD4320 induces cell apoptosis in MCL cell lines. Furthermore, the in vivo efficacy of AZD4320 was assessed in a CAR-T resistant MCL patient-derived xenograft (PDX) model. Results: AZD4320 significantly inhibited cell proliferation in all tested MCL cell lines, including both ibrutinib/venetoclax-sensitive and -resistant cell lines. It had an IC50 value at a low nanomolar range between 0.59 nM to 18 nM. Consistently, AZD4320 was effective in targeting primary PDX cells ex vivo. AZD4320 induced cell apoptosis in a dose-dependent manner. AZD0466, the nanomedicine formulation of AZD4320 (30mg/kg, weekly, IV), dramatically inhibited tumor growth and prolonged mouse survival in an ibrutinib-CAR-T dual-resistant PDX mouse model. All mice tolerated the treatment dose without any body weight loss. Conclusion: The novel BCL-2/XL dual inhibitor AZD4320 demonstrated excellent anti-MCL activity in both ibrutinib/venetoclax-sensitive and -resistant MCL cells in vitro. This was further validated in vivo in a ibrutinib-CAR-T dual-resistant PDX model. These findings provide evidence that dual targeting of BCL-2 and BCL-XL by AZD4320 is promising as it may overcome therapeutic resistance in relapsed/refractory MCL. Disclosures Andersen: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Cidado:AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Wang:OMI: Honoraria, Other: Travel, accommodation, expenses; Nobel Insights: Consultancy; Loxo Oncology: Consultancy, Research Funding; Celgene: Consultancy, Other: Travel, accommodation, expenses, Research Funding; Kite Pharma: Consultancy, Other: Travel, accommodation, expenses, Research Funding; OncLive: Honoraria; Lu Daopei Medical Group: Honoraria; Acerta Pharma: Research Funding; VelosBio: Research Funding; BioInvent: Research Funding; Juno: Consultancy, Research Funding; Dava Oncology: Honoraria; Verastem: Research Funding; Molecular Templates: Research Funding; Oncternal: Consultancy, Research Funding; Pulse Biosciences: Consultancy; AstraZeneca: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Beijing Medical Award Foundation: Honoraria; Pharmacyclics: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; MoreHealth: Consultancy; Guidepoint Global: Consultancy; Targeted Oncology: Honoraria; Janssen: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; InnoCare: Consultancy.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1867-1867
Author(s):  
Yijing Li ◽  
Yang Liu ◽  
Yuxuan Che ◽  
Joseph McIntosh ◽  
Alexa A Jordan ◽  
...  

Abstract Introduction As a rare form of non-Hodgkin's lymphoma, mantle cell lymphoma (MCL) is an aggressive subtype. This is largely due to frequent relapses after therapies including paradigm shifting therapies BTK inhibitors (BTKi), such as ibrutinib and acalabrutinib, and Bcl-2 inhibitor (Bcl-2i) venetoclax after long-term treatment in the clinic. Dysregulation of Bcl-2 and Bcl-X L, contributes to therapeutic resistance in MCL. AZD0466 is a novel and highly potent Bcl-2/X L dual inhibitor with active moiety AZD4320. Our preliminary data showed AZD4320 is potent in inhibiting cell viability of MCL cells (IC 50 = 1.6-78 nM). In this study, we assessed the combination efficacy of AZD4320/AZD0466 and acalabrutinib on preclinical MCL models. Methods Cell viability assay was performed to assess the in vitro efficacy of AZD4320 and acalabrutinib alone or in combination in a panel of ibrutinib/venetoclax-sensitive and -resistant MCL cell lines. Cell apoptosis assay was also performed to determine if AZD4320 and acalabrutinib enhanced cell death by cell apoptosis in MCL cell lines. Protein expression profiles of a panel of pro- and anti-apoptotic proteins and other relevant proteins were detected by immunoblotting. Since AZD4320 is limited in preclinical model due to physicochemical properties and dose limiting cardiovascular toxicity, AZD0466, the drug-dendrimer conjugate of AZD4320, was used for in vivo experiment. In vivo efficacy of AZD0466 (34 mg/kg, weekly, iv) and acalabrutinib (20 mg/kg, BID, oral) alone or in combination was evaluated using a Mino-venetoclax-R (Mino-R) cell xenograft model and a PDX model derived from an ibrutinib-CAR-T dual-resistant MCL patient. Results AZD4320 in combo with acalabrutinib inhibited cell proliferation synergistically in both ibrutinib/venetoclax-sensitive and -resistant cell lines (combination index = 0.17-0.93). Compared to vehicle or either single agent, the combination enhanced cell apoptosis by increasing pro-apoptotic markers cleaved caspase 3 and cleaved PARP. In the xenograft mouse model derived from venetoclax-resistant Mino-R cells, co-treatment of AZD0466 and acalabrutinib decreased tumor size significantly compared to vehicle (n = 5, p < 0.0001) or either single agent (n = 5, p = 0.0118 and 0.0070, respectively). Furthermore, in the PDX mouse model derived from a patient relapsed subsequently from ibrutinib and CAR T therapy, the combination of AZD0466 and acalabrutinib inhibited tumor growth compared to vehicle or either single agent. Acalabrutinib or AZD0466 improved survival compared with vehicle by 14 days or 32 days, respectively. Compared to Acalabrutinib or AZD0466, the combination therapy extended survival by 25 days and 7 days, respectively. All mice tolerated the treatment dose without any weight loss compared to the vehicle or either single agent group. Conclusion Compared to AZD4320/AZD0466 and acalabrutinib, combination therapy demonstrated anti-MCL synergy both in vitro and in vivo. These findings suggest that targeting Bcl-2/X L and BTK is promising to overcome multiple acquired resistance phenotypes, including CD19 CAR T-cell therapy. Disclosures Andersen: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Cidado: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Wang: DTRM Biopharma (Cayman) Limited: Consultancy; BeiGene: Consultancy, Honoraria, Research Funding; Physicians Education Resources (PER): Honoraria; Anticancer Association: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; CAHON: Honoraria; The First Afflicted Hospital of Zhejiang University: Honoraria; Epizyme: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria, Research Funding; BGICS: Honoraria; Imedex: Honoraria; Clinical Care Options: Honoraria; Celgene: Research Funding; Genentech: Consultancy; Loxo Oncology: Consultancy, Research Funding; InnoCare: Consultancy, Research Funding; Molecular Templates: Research Funding; Lilly: Research Funding; VelosBio: Consultancy, Research Funding; BioInvent: Research Funding; Oncternal: Consultancy, Research Funding; OMI: Honoraria; Newbridge Pharmaceuticals: Honoraria; Scripps: Honoraria; Hebei Cancer Prevention Federation: Honoraria; Chinese Medical Association: Honoraria; Pharmacyclics: Consultancy, Research Funding; Juno: Consultancy, Research Funding; CStone: Consultancy; Bayer Healthcare: Consultancy; Miltenyi Biomedicine GmbH: Consultancy, Honoraria; Kite Pharma: Consultancy, Honoraria, Research Funding; Acerta Pharma: Consultancy, Honoraria, Research Funding; Dava Oncology: Honoraria; Moffit Cancer Center: Honoraria; Mumbai Hematology Group: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-10
Author(s):  
Yang Liu ◽  
Vivian Changying Jiang ◽  
Joseph McIntosh ◽  
Alexa A Jordan ◽  
Yijing Li ◽  
...  

Background: Mantle cell lymphoma (MCL) is a distinctive B-cell non-Hodgkin's lymphoma characterized by poor prognosis. Despite clinical success of the covalent Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, a subset of patients need to discontinue ibrutinib therapy due to treatment related adverse events, which are primarily caused by off-target effects. Furthermore, primary or acquired resistance to ibrutinib continues to emerge and often leads to dismal clinical outcomes. Therefore, exploration of more target-specific BTK inhibitors is crucial to minimize the adverse events and provide clinical benefit. CAR T therapy has achieved unprecedented response in patients with relapsed or refractory MCL. However, the development of resistant phenotypes is a new emerging medical challenge in MCL patients with unknown mechanisms. Here, we characterize the therapeutic efficacy of LOXO-305, a next generation non-covalent small molecule inhibitor with high selectivity for BTK. Preclinical efficacy of LOXO-305 alone or in combination with venetoclax (ABT199), a selective Bcl-2 inhibitor, was evaluated in MCL using in vitro and in vivo CAR T-resistant PDX models. Methods : In vitro cell viability was measured after 72 hour treatment with LOXO-305 alone and in combination with ABT-199 in MCL cell lines using Cell Titer Glo luminescent cell viability assay (Promega). To determine whether LOXO-305 induces cell death through cell apoptosis, we used annexin V/PI staining followed by flow cytometry analysis. To evaulate in vivo drug efficacy we used patient-derived xenograft (PDX) models established from primary patient samples. Results: LOXO-305 treatment, as a single agent, resulted in effective MCL cell growth inhibition in a panel of MCL cell lines including ibrutinib and/or ABT-199-resistant cell lines (IC50=6.6-24.4μM), except for JeKo BTK KD cells with BTK knockdown (KD) via CRISPR/Cas9 technology (IC50>30 μM). To improve the efficacy, we decided to investigate the potential of LOXO-305 in combination with ABT199, since the combo of ibrutinib and ABT199 is clinically beneficial in MCL patients. Indeed, LOXO-305 significantly improved the inhibitory effect of ABT-199 in the ABT-199 resistant Mino-R and JeKo BTK KD cells, suggesting that this combination could be further explored in overcoming ABT-199 resistance in MCL. The compelling synergistic effect was further confirmed by annexin V/PI apoptosis assay. Next, we assessed the in vivo efficacy of LOXO-305 in an ibrutinib-CAR T dual-resistant PDX model. LOXO-305 effectively reduced tumor size after 40 days of treatment as a single agent. Moreover, LOXO-305 treatment showed significant anti-tumor effects in an ibrutinib-ABT199-CAR T triple-resistant PDX model that recapitulates the most aggressive human MCL variants invivo. In this model, LOXO-305 treatment effectively decreased the tumor load in mice spleen and liver (p<0.05) as well as in bone marrow and peripheral blood, compared to vehicle-treated mice (p<0.001). Conclusions: By using various in vitro and in vivo multiple resistant MCL models we determined that LOXO-305 holds great promise for an effective single agent or combined treatment of the most eggressive forms of MCL, and that a continued investigation of the rationale for a combined therapy with ABT-199 is imperative to understand its role in overcoming ibrutinib-ABT199-CAR T triple resistance. Disclosures Wang: OMI: Honoraria, Other: Travel, accommodation, expenses; MoreHealth: Consultancy; Celgene: Consultancy, Other: Travel, accommodation, expenses, Research Funding; AstraZeneca: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Pharmacyclics: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Janssen: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Beijing Medical Award Foundation: Honoraria; Lu Daopei Medical Group: Honoraria; Loxo Oncology: Consultancy, Research Funding; Pulse Biosciences: Consultancy; Kite Pharma: Consultancy, Other: Travel, accommodation, expenses, Research Funding; Juno: Consultancy, Research Funding; BioInvent: Research Funding; VelosBio: Research Funding; Acerta Pharma: Research Funding; InnoCare: Consultancy; Oncternal: Consultancy, Research Funding; Nobel Insights: Consultancy; Guidepoint Global: Consultancy; Dava Oncology: Honoraria; Verastem: Research Funding; Molecular Templates: Research Funding; OncLive: Honoraria; Targeted Oncology: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1181-1181
Author(s):  
Yijing Li ◽  
Yang Liu ◽  
Yuxuan Che ◽  
Alexa A Jordan ◽  
Joseph McIntosh ◽  
...  

Abstract Introduction Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin's lymphoma. Frequent relapse from prior therapies remains a major medical challenge. BTK inhibitors (BTKi), such as ibrutinib and acalabrutinib, have demonstrated clinical benefit in MCL patients, however, resistance to BTKi is acquired by most MCL patients following initial response in the clinic. Unbalanced pro- and anti-apoptotic proteins have been shown to contribute to therapeutic resistance. Bcl-2 inhibitor venetoclax was approved by FDA to treat chronic lymphocytic leukemia, small lymphocytic lymphoma, or acute myeloid leukemia, and is currently under investigation in MCL patients. Venetoclax is efficacious with ORR up to 75% in treating BTKi-naive MCL patients and 53% BTKi-R/R patients. Interestingly, increased expression of Mcl-1 and Bcl-x L highly correlates with venetoclax resistance in MCL. AZD5991 is a highly selective Mcl-1 inhibitor and our preliminary data showed it is potent in targeting MCL cells (IC 50 =76-600 nM). Therefore, we hypothesize that dual targeting Bcl-2 by venetoclax and Mcl-1 by AZD5991 will achieve synergistic effect and significantly improve treatment outcome for aggressive R/R MCL patients. In this study, we assessed the synergistic efficacy of AZD5991 in combination with venetoclax in MCL preclinical models with R/R phenotype to ibrutinib, venetoclax or CD19 CAR T therapies. Methods Cell viability assay was performed to assess the in vitro efficacy of AZD5991 and venetoclax alone or in combination in a panel of ibrutinib/venetoclax-sensitive and -resistant MCL cell lines. Cell apoptosis assay was also performed to determine if AZD5991 and venetoclax induce cell death by cell apoptosis in MCL cell lines. Protein expression profiles of a panel of pro- and anti-apoptotic proteins and other relevant proteins were detected by western blots. In vivo efficacy of AZD5991 (30/30 mg/kg, intravenously, weekly) and venetoclax (5 mg/kg, oral, daily) alone or in combination was evaluated using PDX models derived from an ibrutinib-resistant patient or an ibrutinib-CAR-T dual-resistant MCL patient. Results AZD5991 and venetoclax combination potently and synergistically inhibited cell viability (combination index = 0.16-0.88) and enhanced cell apoptosis in vitro in both ibrutinib/venetoclax sensitive and resistant cell lines. Consistently, pro-apoptotic markers cleaved caspase 3 and cleaved PARP were increased. In an ibrutinib-resistant PDX mouse model, the combination of AZD5991 and venetoclax resulted in anti-MCL synergistic response. Consistently, the amount of β2M in the mouse plasma from the combo group was much lower than vehicle group (n =5, p = 0.010) and the two single agent groups (n =5, p = 0.005 and 0.013, respectively). In an ibrutinib-CAR-T dual-resistant PDX mouse model, co-treatment of AZD5991 and venetoclax inhibited tumor growth significantly and prolonged mouse survival for at least 100 days compared to vehicle or either single agent. All mice tolerated the treatment dose without any weight loss. Conclusion Significant anti-MCL synergy was observed for AZD5991 and venetoclax combo in vitro in both pairs of Jeko-1/JeKo-ibrutinib-R and Mino/Mino-venetoclax-R. This was further validated in aggressive R/R PDX models including an ibrutinib-resistant PDX model and an ibrutinib-CD19 CAR-T dual-resistant PDX model. Altogether, these findings suggest that dual targeting Bcl-2 and Mcl-1 is synergistic and has the potential in overcoming multiple acquired resistance phenotypes, including CD19 CAR T-cell therapy. These data provide insights on therapeutic development to improve patient outcome by overcoming therapeutic resistance. Disclosures Andersen: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Cidado: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Wang: Clinical Care Options: Honoraria; VelosBio: Consultancy, Research Funding; BioInvent: Research Funding; Genentech: Consultancy; Celgene: Research Funding; Molecular Templates: Research Funding; Dava Oncology: Honoraria; BGICS: Honoraria; Imedex: Honoraria; BeiGene: Consultancy, Honoraria, Research Funding; Juno: Consultancy, Research Funding; Newbridge Pharmaceuticals: Honoraria; CAHON: Honoraria; Kite Pharma: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Bayer Healthcare: Consultancy; DTRM Biopharma (Cayman) Limited: Consultancy; InnoCare: Consultancy, Research Funding; Moffit Cancer Center: Honoraria; Hebei Cancer Prevention Federation: Honoraria; Scripps: Honoraria; Mumbai Hematology Group: Honoraria; OMI: Honoraria; Epizyme: Consultancy, Honoraria; Chinese Medical Association: Honoraria; Oncternal: Consultancy, Research Funding; The First Afflicted Hospital of Zhejiang University: Honoraria; Anticancer Association: Honoraria; AstraZeneca: Consultancy, Honoraria, Research Funding; Miltenyi Biomedicine GmbH: Consultancy, Honoraria; Acerta Pharma: Consultancy, Honoraria, Research Funding; CStone: Consultancy; Loxo Oncology: Consultancy, Research Funding; Pharmacyclics: Consultancy, Research Funding; Physicians Education Resources (PER): Honoraria; Lilly: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1182-1182
Author(s):  
Yang Liu ◽  
Changying Jiang ◽  
Fangfang Yan ◽  
Joseph McIntosh ◽  
Alexa A Jordan ◽  
...  

Abstract Background Mantle cell lymphoma (MCL) is a rare and aggressive B-cell lymphoma characterized by poor prognosis. Although remarkable therapeutic advances have been made by covalent Bruton's tyrosine kinase (BTK) inhibition and CAR T cell therapy, therapeutic resistance inevitably occurs and leads to dismal clinical outcome. Pirtobrutinib (LOXO-305) is a next-generation, highly selective and non-covalent BTK inhibitor. A phase 1/2 BRUIN study showed that pirtobrutinib demonstrated promising efficacy in heavily pretreated MCL patients with or without prior covalent BTK inhibition. Here, we investigated the mechanism of action of pirtobrutinib in MCL cells in vitro and proposed the potential combination therapy in a venetoclax-resistant xenograft model. Methods MCL cell proliferation was monitored by trypan blue exclusion assay after 24-, 48- and 72-hour treatment with pirtobrutinib and ibrutinib. We performed Annexin V/PI staining to measure the apoptosis inductive effects. Cell cycle analysis using propidium iodide (PI) DNA staining was conducted to compare cell cycle progression kinetics between pirtobrutinib and ibrutinib. We performed RNAseq analysis in Z138 cells to compare differentially expressed genes (DEGs) between pirtobrutinib and ibrutinib treatment. Western blotting was utilized to detect specific signaling proteins. Mino-venetoclax-R cells were inoculated subcutaneously into NSG mice and used for in vivo drug efficacy determination. Results Compared to covalent BTK inhibitor ibrutinib, the novel non-covalent BTK inhibitor pirtobrutinib was more potent in inhibiting MCL cell proliferation in a panel of MCL cell lines, especially in ibrutinib/venetoclax resistant cell lines (pirtobrutinib vs. ibrutinib, p<0.01). Treatment with pirtobrutinib (10μM) for 24 hours induced higher levels of apoptosis than that by ibrutinib in all the MCL cell lines tested (p<0.05), which was also confirmed at the molecular level by stronger caspase-3 activation and PARP cleavage. To understand the mechanism of action, we performed whole transcriptomic profiling by RNAseq analysis using Z138 cells treated with/without pirtobrutinib or ibrutinib. Pirtobrutinib treatment resulted in upregulation of 137 genes and downregulation of 97 genes compared to the ibrutinib treatment (adjusted p<0.05). In addition to the downregulated MYC targets and PI3K/Akt pathway, gene set enrichment analysis (GSEA) revealed a significant enrichment for G2/M checkpoints and E2F targets signatures (key genes: PLK1, CDKN1A and CCNB1) in pirtobrutinib treated cells. Consistently, follow-up studies showed that γH2AX level was highly increased upon pirtobrutinib treatment. Pirtobrutinib treatment but not ibrutinib treatment resulted in G2/M cell cycle arrest. The blockade of cell cycle progression is positively correlated with decreased protein levels of critical regulators of S and G2/M phase transition such as cyclin B and CDC25C. BTK inhibitor (ibrutinib) in combination with venetoclax has shown great efficacy in preclinical models and in MCL patients. Therefore, here we assessed the in vivo efficacy of pirtobrutinib in combination with venetoclax with side-by-side comparison to ibrutinib & venetoclax in the Mino-venetoclax-R mouse model. Pirtobrutinib & venetoclax combination enhanced the efficacy of pirtobrutinib in restraining the tumor size (p<0.001) in the xenograft model. Notably, this novel combinatorial treatment exerted much higher potency than ibrutinib and venetoclax combination therapy (p<0.001). In addition, the pirtobrutinib & venetoclax combination was well tolerated and did not reduce overall mouse body weights compared with the vehicle treated mice. Conclusions Pirtobrutinib overcame both ibrutinib and venetoclax resistance in MCL cells in vitro and in vivo. G2/M checkpoints and E2F targets pathways were significantly enriched in both cases. Pirtobrutinib & venetoclax showed better in vivo efficacy in MCL models than combination of ibrutinib & venetoclax. Figure 1 Figure 1. Disclosures Wang: Genentech: Consultancy; Juno: Consultancy, Research Funding; Kite Pharma: Consultancy, Honoraria, Research Funding; Clinical Care Options: Honoraria; CAHON: Honoraria; InnoCare: Consultancy, Research Funding; Moffit Cancer Center: Honoraria; Molecular Templates: Research Funding; Oncternal: Consultancy, Research Funding; DTRM Biopharma (Cayman) Limited: Consultancy; Hebei Cancer Prevention Federation: Honoraria; Lilly: Research Funding; Loxo Oncology: Consultancy, Research Funding; BioInvent: Research Funding; OMI: Honoraria; Miltenyi Biomedicine GmbH: Consultancy, Honoraria; Imedex: Honoraria; Physicians Education Resources (PER): Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Bayer Healthcare: Consultancy; Chinese Medical Association: Honoraria; Dava Oncology: Honoraria; Celgene: Research Funding; Mumbai Hematology Group: Honoraria; Acerta Pharma: Consultancy, Honoraria, Research Funding; BeiGene: Consultancy, Honoraria, Research Funding; Newbridge Pharmaceuticals: Honoraria; CStone: Consultancy; BGICS: Honoraria; The First Afflicted Hospital of Zhejiang University: Honoraria; Scripps: Honoraria; Epizyme: Consultancy, Honoraria; Pharmacyclics: Consultancy, Research Funding; AstraZeneca: Consultancy, Honoraria, Research Funding; VelosBio: Consultancy, Research Funding; Anticancer Association: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 681-681
Author(s):  
Fiona Brown ◽  
Inah Hwang ◽  
Shelby Sloan ◽  
Claire Hinterschied ◽  
JoBeth Helmig-Mason ◽  
...  

Abstract Mantle cell lymphoma (MCL) is an incurable B cell malignancy, comprising 5% of non-Hodgkin lymphomas diagnosed annually. MCL is associated with a poor prognosis due to emergence of resistance to immuno-chemotherapy and targeted agents. The average overall survival of patients with MCL is 4-6 years and for the majority of patients who progress on targeted agents, survival remains at a dismal 3-8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life. The type II protein arginine methyltransferase enzyme, PRMT5 is overexpressed and promotes growth and survival of MCL. Inhibition of PRMT5 with a novel, SAM-competitive class of inhibitors drives anti-tumor activity in MCL cell lines and patient derived xenograft (PDX) models derived from patients with relapse or refractory disease. Selective inhibition of PRMT5 with PRT-382 (Prelude Therapeutics) in these models and MCL cell lines leads to disruption of constitutive PI3K/AKT signaling, dephosphorylation and nuclear translocation of FOXO1, and enhanced recruitment of this tumor suppressor protein to target genes. By performing chromatin immunoprecipitation-sequencing (ChIP seq) analysis, we identified over 800 newly emerged FOXO1-bound genomic loci, including multiple pro-apoptotic BCL2 family proteins (BAX, BAK1, BIK, BBC3, BMF and NOXA1). FOXO1 localization and transcriptional differences were confirmed by ChIP PCR and RT-PCR respectively. Protein levels were measured with Western blotting. BAX was identified as the most common direct target of FOXO1-transriptional activity that was upregulated on both a transcript and protein level. This led us to hypothesize that PRMT5 inhibition could potentially drive a therapeutic vulnerability to the BCL-2 inhibitor venetoclax. Single agent and combination treatment with venetoclax and PRT382 was performed in nine MCL lines. Of the nine lines, four were considered relatively resistant to PRT-382 and five resistant to venetoclax. Synergy scores, determined from MTS assays, showed significant levels of synergy in the majority of MCL lines tested. CCMCL1 and UPN1, BCL-2 negative MCL lines, and Maver1, which is highly resistant to PRMT5i, were the only cell lines to not show synergy. The cell line with the highest levels of synergy, Z-138, expressed high levels of BCL-2 and is ibrutinib resistant. Overall, there was a strong positive correlation between BCL-2 expression and synergy score (r= -0.8956, p=0.0064). The synergy seen was confirmed to be through the intrinsic apoptotic pathway based on caspase activity. To determine a mechanism of action, BAX and BAK1 were knocked down in four cell lines, three that displayed synergy and one that was resistant. This suggests that BAX expression is essential for synergy between PRMT5 and BCL2 inhibition to occur. Knock down of BAK1, the other effector of the BCL2 family of proteins, did not show protection suggesting that BAX is necessary and sufficient for this therapeutic synergy to occur. We also determined that p53 status did not correlate to the response seen (p=0.477), supporting that this mechanism is occurring through FOXO1 transcriptional regulation. In vivo evaluation in two preclinical MCL models showed therapeutic synergy with combination venetoclax/PRT382 treatment. Mice were treated with sub-therapeutic doses of venetoclax and/or PRT382 and disease burden was assessed weekly via flow cytometry. Combination treatment with well-tolerated doses of venetoclax and PRMT5 inhibitors in the MCL in vivo models showed synergistic anti-tumor activity. Both PDX models showed an extension of life with combination treatment (P<0.001) and delayed disease progression (P<0.05). This data provides mechanistic rationale while demonstrating therapeutic synergy in this preclinical study and justifies further consideration of this combination strategy targeting PRMT5 and BCL2 in MCL in the clinical setting. Disclosures Zhang: Prelude Therapeutics: Current Employment. Vaddi: Prelude Therapeutics: Current Employment, Current equity holder in publicly-traded company. Elemento: AstraZeneca: Research Funding; Janssen: Research Funding; Johnson and Johnson: Research Funding; One Three Biotech: Consultancy, Other: Current equity holder; Volastra Therapeutics: Consultancy, Other: Current equity holder, Research Funding; Eli Lilly: Research Funding; Freenome: Consultancy, Other: Current equity holder in a privately-held company; Owkin: Consultancy, Other: Current equity holder; Champions Oncology: Consultancy. Scherle: Prelude Therapeutics: Current Employment, Current equity holder in publicly-traded company. Paik: Forkhead BioTherapeutics: Research Funding. Baiocchi: Prelude Therapeutics: Consultancy; viracta: Consultancy, Current holder of stock options in a privately-held company; Codiak Biosciences: Research Funding; Atara Biotherapeutics: Consultancy.


ESMO Open ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. e000387 ◽  
Author(s):  
Chiara Tarantelli ◽  
Elena Bernasconi ◽  
Eugenio Gaudio ◽  
Luciano Cascione ◽  
Valentina Restelli ◽  
...  

BackgroundThe outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials.Materials and methodsThe activity of birabresib as a single agent and in combination, as well as its mechanism of action was studied in MCL cell lines.ResultsBirabresib showed in vitro and in vivo activities, which appeared mediated via downregulation of MYC targets, cell cycle and NFKB pathway genes and were independent of direct downregulation of CCND1. Additionally, the combination of birabresib with other targeted agents (especially pomalidomide, or inhibitors of BTK, mTOR and ATR) was beneficial in MCL cell lines.ConclusionOur data provide the rationale to evaluate birabresib in patients affected by MCL.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Alexa A Jordan ◽  
Joseph McIntosh ◽  
Yang Liu ◽  
Angela Leeming ◽  
William Lee ◽  
...  

Mantle cell lymphoma (MCL) is a rare but aggressive B-cell non-Hodgkin's lymphoma that represents 6% of all lymphomas in the United States. Recent therapies including anti-CD20 antibody rituximab, BTK inhibitors, and BCL-2 inhibitors alone or in combination have shown great anti-MCL efficacy. However, primary and acquired resistance to one or multiple therapies commonly occurs, resulting in poor clinical outcome. Therefore, resistance to such therapies is currently an unmet clinical challenge in MCL patients. Therapeutic strategies to overcome this resistance holds promise to significantly improve survival of refractory/relapsed MCL patients. Recent studies showed Fc gamma receptors (FcγRs) play important roles in enhancing the efficacy of antibody-based immunotherapy. In particular, FcgRIIB (CD32B), an inhibitory member of the FcγR family, is implicated in the immune cell desensitization and tumor cell resistance through the internalization of therapeutic antibodies such as rituximab. Based on our flow cytometry analysis, we demonstrated that FcgRIIB is highly expressed on the cell surface of MCL cell lines (n=10) and primary MCL patient samples (n=22). This indicates that FcgRIIB may play an important role in MCL malignancy and identifies FcgRIIB is a potential therapeutic target for the treatment of MCL. To address this, we tested the in vivo efficacy of BI-1206, a fully humanized monoclonal antibody targeting FcgRIIB, alone, or in combination with clinically approved or investigational drugs including rituximab, ibrutinib and venetoclax. In the first in vivo cohort, BI-1206, as a single agent, dramatically inhibited the tumor growth of ibrutinib-venetoclax dual-resistant PDX tumor models, suggesting that targeting FcgRIIB by BI-1206 alone has high anti-MCL activity in vivo. Next, we assessed whether BI-1206 can boost anti-MCL activity of antibody-based therapy such as rituximab in combination with ibrutinib or venetoclax using additional mice cohorts of cell line-derived xenograft and patient-derived xenograft models. BI-1206 significantly enhanced the in vivo efficacy of ibrutinib plus rituximab, and venetoclax plus rituximab, on tumor growth inhibition, including the JeKo-1 derived xenograft models, previously proven to be partially resistant to ibrutinib and venetoclax in vivo. This tumor-sensitizaton effect was further confirmed in the ibrutinib and venetoclax dual-resistant PDX models of MCL where BI-1206 was combined with venetoclax and rituximab. More detailed mechanistic studies are currently ongoing to reveal the mechanism of action of BI-1206-based combinations or as single therapy with the possibility that BI-1206 itself may have a cytotoxic anti-tumor direct activity in MCL. In conclusion, BI-1206 as single agent showed potent efficacy in overcoming ibrutnib-venetoclax dual resistance. Moveover, BI-1206 enhanced the in vivo efficacy of ibrutinib plus rituximab and venetoclax plus rituximab and overcomes resistance to these treatments resulting in enhanced anti-tumor effects. Disclosures Karlsson: BioInvent International AB: Current Employment. Mårtensson:BioInvent International AB: Current Employment, Current equity holder in publicly-traded company. Kovacek:BioInvent International AB: Current Employment, Current equity holder in publicly-traded company. Teige:BioInvent International AB: Current Employment, Current equity holder in publicly-traded company. Frendéus:BioInvent International AB: Current Employment, Current equity holder in publicly-traded company. Wang:Pulse Biosciences: Consultancy; Loxo Oncology: Consultancy, Research Funding; Kite Pharma: Consultancy, Other: Travel, accommodation, expenses, Research Funding; BioInvent: Research Funding; Juno: Consultancy, Research Funding; Beijing Medical Award Foundation: Honoraria; OncLive: Honoraria; Verastem: Research Funding; Molecular Templates: Research Funding; Dava Oncology: Honoraria; Guidepoint Global: Consultancy; Nobel Insights: Consultancy; Oncternal: Consultancy, Research Funding; InnoCare: Consultancy; Acerta Pharma: Research Funding; VelosBio: Research Funding; MoreHealth: Consultancy; Targeted Oncology: Honoraria; OMI: Honoraria, Other: Travel, accommodation, expenses; Celgene: Consultancy, Other: Travel, accommodation, expenses, Research Funding; AstraZeneca: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Pharmacyclics: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Janssen: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Lu Daopei Medical Group: Honoraria.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3729-3729
Author(s):  
Heather Gilbert ◽  
John Cumming ◽  
Josef T. Prchal ◽  
Michelle Kinsey ◽  
Paul Shami

Abstract Abstract 3729 Poster Board III-665 Mantle cell lymphoma (MCL) is a well defined B-cell non-Hodgkin lymphoma characterized by a translocation that juxtaposes the BCL1 gene on chromosome 11q13, which encodes cyclin D1 (CD1), next to the immunoglobulin heavy chain gene promoter on chromosome 14. The resulting constitutive overexpression of CD1 leads to a deregulated cell cycle and activation of cell survival mechanisms. In addition, the gene which encodes GST-n, an enzyme that has been implicated in the development of cancer resistance to chemotherapy, is also located on chromosome 11q13 and is often coamplified along with the BCL1 gene in MCL (1). These two unique biological features of MCL - the overproduction of cyclin D1 and GST-n – may be involved in the carcinogenesis, tumor growth and poor response of this disease to treatment, and they offer potential mechanisms for targeted anti-cancer therapy. Nitric oxide (NO) is a biologic effector molecule that contributes to a host's immune defense against microbial and tumor cell growth. Indeed, NO is potently cytotoxic to tumor cells in vitro (2–4). However, NO is also a potent vasodilator and induces hypotension, making the in vivo administration of NO very difficult. To use NO in vivo requires agents that selectively deliver NO to the targeted malignant cells. A new compound has recently been developed that releases NO upon interaction with glutathione in a reaction catalyzed by GST-n. JS-K seeks to exploit known GST-n upregulation in malignant cells by generating NO directly in cancer cells, and it has been shown to decrease the growth and increase apoptosis in vitro in AML cell lines, AML cells freshly isolated from patients, multiple myeloma cell lines, hepatoma cells and prostate cancer cell lines (3, 5–7). JS-K also decreases tumor burden in NOD/SCID mice xenografted with AML and multiple myeloma cells (5, 7). Importantly, JS-K has been used in cytotoxic doses in the mouse model without significant hypotension. To evaluate whether JS-K treatment has anti-tumor activity in MCL, the human MCL cell lines Jeko1, Mino, Granta and Hb-12 were grown with media only, with JS-K at varying concentrations and with DMSO as an appropriate vehicle control. For detection of apoptotic cells, cell-surface staining was performed with FITC-labeled anti–Annexin V and PI. Cell growth was evaluated using the Promega MTS cytotoxicity assay. Results show that JS-K (at concentrations up to 10 μM) inhibits the growth of MCL lines compared to untreated controls, with an average IC50 of 1 μM. At 48 hours of incubation, all cell lines showed a significantly greater rate of apoptosis than untreated controls. A human MCL xenograft model was then created by subcutaneously injecting two NOD/SCID IL2Rnnull mice with luciferase-transfected Hb12 cells. Seven days post-injection, one of the mice was treated with JS-K at a dose of 4 μmol/kg (expected to give peak blood levels of around 17 mM in a 20 g mouse). Injections of JS-K were given intravenously through the lateral tail vein 3 times a week. The control mouse was injected with an equivalent volume of micellar formulation (vehicle) without active drug. The Xenogen bioluminescence imaging clearly showed a difference in tumor viability, with a significantly decreased signal in the JS-K treated mouse. Our studies demonstrate that JS-K markedly decreases cell proliferation and increases apoptosis in a concentration- and time-dependent manner in mantle cells in vitro. In a xenograft model of mantle cell lymphoma, treatment with JS-K results in decreased tumor viability. Proposed future research includes further defining the molecular basis of these treatment effects; using this therapy in combination with other cancer treatments both in vitro and in vivo; and studying JS-K treatment in MCL patients. Disclosures: Shami: JSK Therapeutics: Founder, Chief Medical Officer, Stockholder.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3016-3016 ◽  
Author(s):  
Jack Wang ◽  
Victoria Zhang ◽  
Taylor Bell ◽  
Yang Liu ◽  
Hui Guo ◽  
...  

Abstract Background: Mantle cell lymphoma (MCL) is an incurable subtype of B-cell lymphoma. Ibrutinib, a first-in-class, once-daily, oral covalent inhibitor of Bruton's tyrosine kinase (BTK) was approved by the FDA for the treatment of MCL in patients previously treated. In our prior multicenter Phase 2 clinical trial, the overall response rate in relapsed/refractory MCL was 68%, with a median progression-free survival (PFS) of 13.9 months. However, the majority of MCL patients treated with ibrutinib relapsed; in these relapsed patients, the one-year survival rate was only 22%. Therefore, there exists an urgent need for additional novel targeted therapies to improve the mortality rate in these patients. In this study, we assessed the in vitro and in vivo effects of duvelisib, a PI3K-δ,-γ inhibitor, in MCL. Methods: The PI3K/AKT/mTOR and other cell survival signaling pathways were investigated by RNASeq and reverse phase protein array (RPPA) in ibrutinib-sensitive and -resistant MCL samples. The expression of PI3K isoforms, α, β, γ, and δ was tested in 11 MCL cell lines, patient and patient-derived xenograft (PDX) MCL cells by western blot analysis. We then investigated the growth inhibition and apoptosis of duvelisib (IPI-145, Infinity Pharmaceuticals, Inc.) in MCL cells by CellTiter-Glo® Luminescent Cell Viability Assay (Promega) and Annexin V-binding assay (BD Biosciences). We established a primary MCL-bearing PDX model and passaged the primary MCL tumor to next generations. Mice were administrated with 50 mg/kg duvelisib daily by oral gavage. Tumor burden and survival time were investigated in the MCL-PDX model. Results: We found that the PI3K/AKT/mTOR signaling pathway was activated in both primary and acquired ibrutinib-resistant MCL cell lines and PDX MCL cells. We immunoblotted PI3K isoforms, α, β, γ, and δ in 11 MCL cell lines and the result demonstrated that both ibrutinib-sensitive and ibrutinib-resistant MCL cells dominantly expressed PI3K-δ and -γ. Next, we tested the effects of duvelisib on these MCL cells. Duvelisib had effects on the growth inhibition and apoptosis in both ibrutinib-sensitive and ibrutinib-resistant MCL cells as good as the PI3K-δ inhibitor, idelalisib (Cal-101, GS-1101). The PI3K-δ isoform could play a very important role in PI3K-mediated signals in MCL. We then investigated the effects of duvelisib in vivo through our established MCL-bearing PDX mouse models. These models are created by inoculating the primary tumor cells from MCL patients into a human fetal bone chip implanted into NSG mice to provide a microenvironment that reconstitutes the human environment. MCL tumor mass was then passaged to next generations for therapeutic investigation of duvelisib. Mice were treated with 50 mg/kg duvelisib daily by oral gavage. Our data demonstrated that duvelisib significantly inhibited tumor growth and prolonged survival of MCL-PDX mice. Conclusion: Duvelisib, an oral dual inhibitor of PI3K-δ,-γ, inhibits MCL growth both in vitro and in PDX mice. These preclinical results suggests duvelisib may be effective in the treatment of patients with relapsed/refractory MCL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4756-4756 ◽  
Author(s):  
Gwyn Bebb ◽  
Huong Muzik ◽  
Sophia Nguyen ◽  
Don Morris ◽  
Douglas A. Stewart

Abstract Introduction Mantle cell lymphoma (MCL), an incurable B cell lymphoma, consistently over expresses bcl-2 despite not carrying the t(14;18). The attenuation of apoptosis by bcl-2 is thought to contribute to the malignant process and increase resistance to some cytotoxic agents. We recently demonstrated that GX15-070, a small molecular inhibitor of the BH3 binding groove of bcl-2, has activity against MCL cell lines in vitro. We set out to assess the effect of GX15-070 alone and in combination with Vincristine on the viability of MCL cells in vitro and in vivo. Methods 3 previously characterized bcl-2 over expressing MCL cell lines (JVM-2, Hbl-2, granta) were used. Cells were grown in standard media and exposed to a range of concentrations of GX15-070 with and without Vincristine. Dose-response was assessed by measuring viability at 48 hours using the WST-1 assay. In vivo experiments were conducted on immune deficient mice in which 5×106 cells were injected in the flank then treated IV with GX15-070 (q 2days × 5 doses), Vincristine (q4 days × 3 doses) or both starting 5 days later. Tumours were measured three times weekly. Results All three MCL cell lines over-expressed bcl-2 by western blot. Each MCL cell line showed sensitivity to GX15-070 at a range of concentrations. The addition of GX15-070 to low dose Vincristine (10−6) caused significant growth inhibition of each MCL cell line (see table 1). Discussion Our results demonstrate that using GX15-070 to target bcl-2 is an effective anti neoplastic approach against MCL cell lines in vitro. In addition, our results suggest that combining Vincristine and GX15-070 is a promising strategy in treating MCL. In vivo experiments to confirm this additive activity are still ongoing and will be presented in full. Initial impressions suggest that there is a rationale for the addition of GX15-070 to current cytotoxic regimens used to treat MCL in the setting of clinical trials. Table 1: Effect of Vincristine and GX15-070 on in vitro growth of 3 MCL cell lines Growth as % age of Control Cell Line JVM-2 HBL-2 Granta Vincristine alone (10-6 mg/ml) 92% 48% 89% GX15-070 alone (0.08 uM) 75% 76% 60% Vincristine 10-6 mg/ml and GX15-070 0.08 uM 52% 24% 52%


Sign in / Sign up

Export Citation Format

Share Document