scholarly journals A Retrospective Multicenter Case Study Evaluating the Characteristics, Management and Outcome of Acquired Amegakaryocytic Thrombocytopenia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3167-3167
Author(s):  
Anais Roeser ◽  
Guillaume Moulis ◽  
Mikael Ebbo ◽  
Louis Terriou ◽  
Elsa Poullot ◽  
...  

Abstract Introduction Acquired amegakaryocytic thrombocytopenia (AAT) is an extremely rare disease characterized by acquired megakaryocytic aplasia or hypoplasia with no other lineage abnormalities. Given limited evidence, the first aim of this study was to describe the characteristics, management and outcome of patients with AAT, the second aim was to examine the therapeutic response through a systematic review of published case reports. Patients and Methods We carried out a retrospective multicenter study through the French Reference Network for Adult Autoimmune Cytopenias, including patients aged > 18 years with acquired thrombocytopenia with a platelet count < 50 x 10 9/L, associated with a megakaryocytes / granulocytes ratio < 50 % on bone marrow, diagnosed from July 2007 to February 2020. Exclusion criteria were: abnormal granular lineage, evidence of dysplasia, bone marrow infiltration by tumor cells or hematologic malignancy, significant karyotype abnormality, and significant paroxysmal nocturnal hemoglobinuria clone. Bone marrow biopsy were centrally reviewed. Patients' medical charts were collected using the standardized form of the referral center for adult immune thrombocytopenia (ITP). Response to treatment was defined according to standardized international criteria for ITP: response (R) and complete response (CR) were respectively defined as platelet count of > 30 × 10 9/L with at least a doubling of the baseline value, and platelet count of > 100 × 10 9/L ; overall response as either R or CR. We performed a systematic review conducted through Medline and Scopus databases from 1970 to April 2021. Cases were included in the analysis if initial platelet count was < 50 x 10 9/L and bone marrow examination was available, demonstrating a megakaryocyte hypoplasia or aplasia with no alternate diagnosis. Results We screened 23 patients reported as thrombocytopenia with absence or decreased megakaryocytes. Eleven patients were excluded because of: presence of megakaryocytes on bone marrow biopsy despite megakaryocytic aplasia on bone marrow aspirate (n=2), absence of bone marrow biopsy (n=4), aplastic or hypoplastic bone marrow (n=3), moderate thrombocytopenia > 50 x 10 9/L (n=1), lack of data (n=1). Twelve patients were included in the analysis. AAT patients had a median age of 52.5 years, 5/12 (41.7%) were female, 6/12 (50%) had a preexisting autoimmune disease (Table 1). All bone marrow biopsies reviewed to date contained CD8+ T-cell infiltrates. Eight patients received a first line treatment with corticosteroids and/or intravenous immunoglobulins (IVIg), a single response was observed. Ten patients received cyclosporine in monotherapy resulting in 4CR, and 1R or in combination with diverse agents with heterogenous responses. Six had received a single therapy with thrombopoietin receptor agonists (TPO-RAs) inducing 4 CR. Eventually, 9 patients (75%) achieved a CR under therapy, obtained with ciclosporin alone in 3 cases, ciclosporin in association with TPO-RA or ATG in 2 cases, cyclophosphamide followed-up by mycophenolate mofetil in 1 case, and TPO-RAs alone in 4 patients (of whom 3 had previously received at least on immunosuppressive therapy). After a median follow up time of 4.0 years (range 1.2 - 11.9), 2 (16%) patients eventually developed an aplastic anemia, 7 and 41.5 months respectively after initial AAT diagnosis. The literature search yielded 108 articles, of which 75 articles reporting 85 cases were included in the final analysis. The pooled analysis of newly reported and historic cases included 97 cases. Overall response rates to corticosteroids and IVIg were respectively 22.4 % and 5.3 % (Table 2). Ciclosporin was used as single agent in 37.1 % of patients, with an overall response rate of 66.7 %. TPO-RAs were used in 9 cases, with a CR in 7 patients (77.8%). Overall, 9/97 patients (9.3 %) experienced an aplastic anemia during the follow-up. The presence of a thymoma was associated with a higher risk of aplastic anemia (OR 6.83 (95%CI 1.22-34.00, p=0.020)). Conclusion Distinguishing AAT from ITP is of significance as the outcome and response to therapy strongly differ. Aplastic anemia may occur in the follow-up but remain rare. Corticosteroids and IVIg are inefficient in most cases, ciclosporin appear to be very effective, TPO-RA could also be an option, as single therapy or in associations. Further data will be needed to define the respective place of these treatments. Figure 1 Figure 1. Disclosures Moulis: Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Argenix: Membership on an entity's Board of Directors or advisory committees; Grifols: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sobi: Membership on an entity's Board of Directors or advisory committees. Ebbo: Grifols: Honoraria, Membership on an entity's Board of Directors or advisory committees; Octapharma: Other: Attendance Grant; Amgen: Honoraria; Sobi: Other: Attendance Grant; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Terriou: Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Haioun: Amgen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Gilead: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; F. Hoffmann-La Roche Ltd: Honoraria, Research Funding; Servier: Honoraria, Research Funding; Takeda: Honoraria, Research Funding; Miltenyi: Honoraria, Research Funding. Michel: Amgen,Novartis,UCB,Argenx,Rigel: Honoraria. Godeau: Amgen: Consultancy; Novartis: Consultancy; Grifols: Consultancy; Sobi: Consultancy. Mahevas: GSK: Research Funding; Amgen: Honoraria.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2428-2428 ◽  
Author(s):  
Michael D. Tarantino ◽  
Jenny M. Despotovic ◽  
John Roy ◽  
John Grainger ◽  
Nichola Cooper ◽  
...  

Abstract Background: Romiplostim is approved globally for use in adults with ITP and in the EU for children with ITP. More comprehensive data are needed on the use of romiplostim in children with ITP. Objective: To examine the safety and efficacy of romiplostim in trials in children with ITP. Methods: Data were combined from 5 romiplostim trials in children with ITP, both placebo-controlled (a phase 1/2 and a phase 3 trial) and open-label (a 3-year trial and 2 extension trials); trial data have been reported previously (Bussel Blood 2011, Bussel PBC 2014, Tarantino Lancet 2016, Tarantino ASH 2017, Grainger ASH 2017). Platelet counts in the 4 weeks after use of rescue medication were excluded from analyses. Descriptive statistics were used. Number (n), mean, standard deviation (SD), median, quartile range (Q1, Q3), minimum (min), and maximum (max) for continuous variables, and number and percentage for categorical variables were provided. Results: Patients (N=286, 24 initially placebo and 262 initially romiplostim) had median (Q1, Q3) age of 10 (6, 13) years, ITP duration of 1.9 (1, 4) years, and baseline platelet count of 14 (8, 23)×109/L. Previously, 88% had received corticosteroids, 87% IVIg, and 21% rituximab; 23% had received >3 prior treatments and 7% had prior splenectomy. Of the 282 patients exposed to romiplostim (20 initially received placebo), the median (min, max) duration of treatment was 65 (8, 471) weeks, with a median (min, max) average weekly dose of 6.6 (0.1, 9.7) μg/kg; total exposure was 468 patient-years. The most common reasons for discontinuing the parent study for romiplostim-treated patients were per protocol (19%; eg, sponsor decision, death, lost to follow-up), consent withdrawn (3%), noncompliance (1%), and administrative decision (1%). Of romiplostim-treated patients, 24% had serious adverse events (SAEs), most commonly epistaxis, low platelet counts, and headache (Table). There were 7 cases of postbaseline neutralizing antibody against romiplostim: 2 transient and 5 persistent. There were no neutralizing antibodies against endogenous TPO. For patients undergoing bone marrow biopsies in the 3-year open-label trial, there were no findings of collagen or bone marrow abnormalities (Year 1 n=27, Year 2 n=5, vs. baseline) (Grainger et al, ASH 2017). One patient had an increase in modified Bauermeister bone marrow grade from 0 to 2 (fine reticulin fiber network) with no associated AEs (the only AEs were a cold and injection site pain); per protocol, there was no follow-up biopsy. Once at a steady dose of 10 μg/kg, most (11/16) of this patient's platelet counts were ≥30×109/L. Investigators reported thrombocytosis AEs; 1 patient had a platelet count of 1462×109/L at Week 14 for 1 week and another had elevated platelet counts 10 times between Weeks 20-172 (max of 872×109/L); there were no associated thrombotic events. Median platelet counts rose quickly and were over 50×109/L from Week 12 on (Figure). Platelet response rates also rose quickly. Overall, 89% of romiplostim-treated patients (vs 8% of placebo) had a platelet response (platelet counts ≥50×109/L; Figure). For romiplostim-treated patients, the first platelet responses occurred after a median of 6 weeks. The median % (Q1, Q3) of months responding was 76% (25%, 93%) and # of months responding was 11 (3, 20); from time of first monthly response, the median (Q1, Q3) % of months responding was 92% (75%, 100%) and # of months responding was 14 (7, 23). Nineteen romiplostim-treated patients discontinued all ITP therapies including romiplostim for ≥6 months while maintaining platelet counts ≥50×109/L (here defined as remission). These treatment-free periods lasted a median (Q1, Q3) of 12 (8, 14) months; no placebo patients remained free of treatment. There were no clear differences between those who did and did not enter remission (ie, age, sex, race, past treatment, ITP duration, baseline platelet count). Bleeding was reported for most (68%) patients: mostly grade 1/2, with 10% having grade 3 bleeding (most commonly epistaxis in 13 patients) and 2 patients having grade 4 bleeding (both reported as "ITP"). Conclusions: In this comprehensive database of romiplostim ITP trials in 286 children with 468 patient-years of romiplostim exposure, romiplostim was well tolerated. With romiplostim, the vast majority (89%) of patients had a platelet response, with some children able to discontinue all ITP treatments for ≥6 months. Disclosures Tarantino: Health Resources and Services Administration: Research Funding; Centers for Disease Control and Prevention: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees; Shire: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Other: Reviews grants; Novo Nordisk: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Grifols: Research Funding, Speakers Bureau. Despotovic:AmGen: Research Funding; Sanofi: Consultancy; Novartis: Research Funding. Grainger:Biotest: Consultancy; Ono Pharmaceuticals: Consultancy; Amgen: Consultancy, Honoraria, Other: Educational grant; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cooper:Amgen, Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Kim:Amgen Inc.: Employment, Equity Ownership. Eisen:Amgen Inc.: Employment, Equity Ownership.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1867-1867
Author(s):  
David Bowen ◽  
Alex Smith ◽  
Jackie Droste ◽  
Pierre Fenaux ◽  
Argyris Symeonidis ◽  
...  

Abstract Abstract 1867 Background: The European LeukemiaNet MDS Registry programme is the largest and most comprehensive prospective population-based registry of ‘low-risk’ MDS patients followed from diagnosis. Objective: The primary objective of this study is to describe the demographics and the disease-management of newly diagnosed MDS patients within IPSS low and intermediate-1 categories. Methods: The project recruits patients from 107 sites in 11 countries, ranging from 2–25 sites per country and including a high proportion of non-University centres in small cities. Consecutive eligible adult patients are registered within 3 months of diagnosis. Local diagnosis is accepted and a large dataset is collected including laboratory data, clinical information (including co-morbidity and concomitant medication) plus health utility (EQ-5D). Data are entered via a web portal and are source verified by study monitoring visits to sites. Results: As of July 2010, 828 patients are registered; data are presented for the first 800 patients. Recruitment is highest from France (n=237) then UK (104), Greece (99), Spain (92), and Sweden (73). Median age is 74.2 yrs (range 18.7–95.3) and from the four largest recruiting countries is 74.6–77.1 yrs. Sixty one percent of patients are male. Twenty patients are non-Caucasian (n=763). Body mass index is overweight (WHO definition) in 43.4% pts and obese in 18.3%, comparable to WHO data for the general adult population (http://apps.who.int/bmi/index.jsp). RCMD is the largest WHO subgroup (34%), followed by RARS (19%), RA (18.4%), RAEB-1 (12.5%), del5q (5.4%), MDS-U (3.5%) and RAEB-2 (0.5%). All WHO subgroups have male predominance except del5q with a striking female excess (79%). IPSS score (n=743) is 0 (52.3%), 0.5 (33.2%), and 1 (14.4%). 84.5% patients have IPSS ‘good’ cytogenetics. 19% patients have 0 cytopenias, 53% 1 cytopenia, 20% 2 cytopenias and 8% 3 cytopenias. WPSS category (with transfusion dependence assessed at time of registration, n=727) is Very Low (35.5%), Low (39.5%), Intermediate (21%), High (4%). Bone marrow features: mean no. of dysplastic lineages = 1.9, bone marrow ring sideroblasts percent = 0 (60% pts), <15 (11.5%), ≥15<50 (19.2%), ≥50 (9.6%). Median haemoglobin (Hb) concentration at presentation is 10.1 g/dl; 36% values were < 10 g/dl and 10% < 8 g/dl. Hb decreased with age (categorical variable Hb. <13>11.5, <11.5>10, <10; Χ2 test, P<.0001). Mean neutrophil count was 2.8 × 109/l with 27% values <1.5 × 109/l, 16% < 1 × 109/l, and 5% < 0.5 × 109/l. Median platelet count was 184 × 109/l; 5% patients had values < 50 × 109/l and 3% < 20 × 109/l. Platelet count and neutrophil count did not change with age. Median serum erythropoietin (EPO) concentration (n=418) was 49 IU/l, 81% values were <200 IU/l and 7% > 500 IU/l. Mean creatinine clearance was 71 mls/min with a marked reduction with age (P<.0001). Baseline serum EPO correlated with Hb. (r=.37, P<.0001), creatinine clearance (r=.22, P<.0001) and age (r=.1, P<.0001). The relationship between creatinine clearance, baseline EPO and response to EPO therapy will be explored. Discussion: This registry records data from the ‘real world’, namely what the hematopathologists in 100 sites diagnose locally as low-risk MDS and will as such be managed as MDS. Median age is consistent with other population-based data (US Medicare, Yorkshire Haematological Malignancy Research Network [www.hmrn.org]). In comparison with registries from specialist MDS centres, median age is higher and a lower proportion have del(5q) WHO subtype. Conclusion: The ELN registry clearly maps the diagnosis and management of low-risk MDS in routine clinical practice in hospitals large and small, specialist and non-specialist and is a unique resource. Acknowledgments: The Steering Committee (SC) acknowledges the commitment and enthusiasm from all 107 sites contributing high quality data to the project. The SC is also grateful for the funding commitment of Novartis Oncology Europe through the University of Nijmegen. Disclosures: Bowen: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; AMGEN: Honoraria; Celgene: Honoraria, Research Funding; Chugai: Honoraria, Research Funding. Fenaux:Celgene: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Janssen Cilag: Honoraria, Research Funding; ROCHE: Honoraria, Research Funding; AMGEN: Honoraria, Research Funding; GSK: Honoraria, Research Funding; Merck: Honoraria, Research Funding; Cephalon: Honoraria, Research Funding. Hellstrom-Lindberg:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3697-3697
Author(s):  
Rebecca Elstrom ◽  
Soo Y. Lee ◽  
James B. Bussel

Abstract Abstract 3697 Introduction: Rituximab has been a useful treatment for patients with ITP; many hundreds of patients have been treated. 30–40% of patients will achieve a complete remission (CR: platelet count >150 × 109/l) with initial treatment and, of this group, the CR will last at least a year in almost all patients. However, emerging data suggests that at least 40% of these patients in CR will relapse between 1 and 3 years from initial treatment suggesting that long-term “cures” only occur in 20% of the initial patients. Therefore it would be desirable if CR's could be achieved in more patients and especially if these would be durable in more than 20%. One approach would be to use rituximab maintenance, however it results in suppression of B-cells for more than 2 years. Dexamethasone has also been used to achieve “cure” in ITP especially in adults at or near diagnosis. Cheng's study suggested that approximately 50% of patients would achieve a long-term response with only one 4-day cycle of high dose (40 mg/day) dexamethasone (N Engl J Med, 2003). A follow up study from GIMEMA suggested that 3–4 cycles of dexamethasone would be better than 1 cycle (Blood, 2007). Finally, Zaja's study suggested that rituximab plus one cycle of dexamethasone was superior to dexamethasone alone with a > 50% CR rate at 6 months (Blood, 2010). Therefore, we elected to perform a pilot study to explore the combination of rituximab with three cycles of dexamethasone at 14 day intervals. Methods: Patients with ITP with platelet counts < 30,000 off therapy and in need of treatment were enrolled. The standard dose (4 infusions of 375mg/m2) rituximab was given on days 1, 8, 15 and 22 and dexamethasone 40 mg (adjusted for size) on days 1–4, 15–18, and 29–32. Results: Fourteen patients between the ages of 4 and 53 years with ITP were treated with rituximab and dexamethasone (R&D) (Table 1). All had received previous steroid therapy as well as other treatments. The median platelet count was 40,000 at initiation of rituximab (range 7,000-230,000); several patients with low counts started with dexamethasone prior to initiating Rituximab to sustain their counts during initial treatment. Patients received rituximab weekly for between 2 and 4 doses and dexamethasone for either 2 or 3 courses at intervals between 1 and 8 weeks (median 2 week intervals). A summary of the results is shown in table 2 demonstrating short-lived platelet increases in response to dexamethasone in almost all patients. With short follow up, there were 7 CR's, 3 PR's and 4 NR's. If this was divided by duration of ITP prior to R&D, there were 4 CR's and 1 NR for ≤ 12 months and 3 CR, 3 PR, and 3 NR for > 12 months. More of the children who were treated had chronic disease than did adults explaining their apparently poorer response. Observed toxicities included hyperglycemia, grade 1 and 2 liver function abnormalities, weight gain, and 1 episode of colitis requiring hospitalization. Three patients opted to skip the third cycle of dexamethasone. Conclusion: A regimen of rituximab + 2–3 courses of dexamethasone is active in patients with pretreated ITP with appreciable but usually manageable toxicity. It appears to yield superior results if administered to patients within one year of diagnosis. This combination merits further exploration in a prospective clinical trial. Disclosures: Bussel: Portola: Consultancy; Amgen: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; GlaxoSmithKline: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ligand: Membership on an entity's Board of Directors or advisory committees, Research Funding; Shionogi: Membership on an entity's Board of Directors or advisory committees, Research Funding; Eisai, Inc.: Membership on an entity's Board of Directors or advisory committees; Cangene: Research Funding; Genzyme: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3279-3279 ◽  
Author(s):  
Ann Janssens ◽  
Michael D. Tarantino ◽  
Robert Bird ◽  
Maria Gabriella Mazzucconi ◽  
Ralph Vincent V. Boccia ◽  
...  

Abstract Abstract 3279 Background: ITP is an autoimmune disorder characterized by increased platelet destruction and suboptimal platelet production. Romiplostim stimulates platelet production via the TPO-receptor, and is recommended for second- and third-line treatment of chronic ITP in adults. We report final data from a large prospective study of romiplostim in adults with ITP of varying duration and severity. Methods: Eligibility criteria were broad: patients ≥18 years of age, who had received prior ITP therapies (final protocol amendment: ≥1, previous amendments: ≥3), with low platelet counts (final amendment: ≤ 30 × 109/L, previous amendments: ≤ 10, ≤ 20 × 109/L) or experiencing uncontrolled bleeding. The only excluded comorbidities were: hematological malignancy, myeloproliferative neoplasms, MDS and bone marrow stem cell disorder. Romiplostim was initiated at 1 (final amendment) or 3 (previous amendments) μg/kg/week, with dose adjustments allowed to maintain platelet counts ≥50 × 109/L. Patients could continue on study until they had access to commercially available romiplostim. Rescue medications were allowed at any time; concurrent ITP therapies could be reduced when platelet counts were > 50 × 109/L. Primary endpoint was incidence of adverse events (AEs) and antibody formation. Secondary endpoint was platelet response, defined as either (1) doubling of baseline count and ≥ 50 × 109/L or (2) ≥20 × 109/L increase from baseline. Results: A total of 407 patients received romiplostim, 60% of whom were female. Median (Q1, Q3) time since ITP diagnosis was 4.25 (1.20, 11.40) years (maximum 57.1 years), with 51% of patients splenectomised and 39% receiving baseline concurrent ITP therapies. Seventy-one percent of patients completed the study, with requirement for alternative therapy and withdrawn consent the most common reasons for discontinuation (5% each). Median (Q1, Q3) on-study treatment duration was 44.29 (20.43, 65.86) weeks (maximum 201 weeks), with a total of 20,201 subject-weeks on study. Incidence and type of AEs were consistent with previous studies. The most common serious treatment-related AEs were cerebrovascular accident, headache, bone marrow reticulin fibrosis (with no evidence of positive trichrome staining for collagen and no evidence suggesting primary idiopathic myelofibrosis), nausea, deep vein thrombosis, hemorrhage and pulmonary embolism, with each reported in 2 of 407 (0.5%) patients. All other serious treatment-related AEs were each reported in one patient. Eighteen patients died; 3 deaths (hemolysis, intestinal ischaema, aplastic anemia) were considered treatment-related. No neutralizing antibodies to romiplostim or TPO were reported. Approximately 90% of patients achieved each of the platelet response definitions, regardless of splenectomy status. Overall, median (Q1, Q3) time to response was 2 (1, 4) weeks for response definition 1, and 1 (1, 3) week for response definition 2. Median (Q1, Q3) baseline platelet count was 14 (8, 21) × 109/L. After 1 week of treatment median (Q1, Q3) platelet count had increased to 42 (18, 101) × 109/L. From week 8 onwards, and excluding counts within 8 weeks of rescue medication use, median platelet counts were consistently above 100 × 109/L (range 101.0–269.5 × 109/L). Median (Q1, Q3) average weekly romiplostim dose was 3.62 (1.99, 6.08) μg/kg. Summary/conclusions: This is the largest prospective study in adult ITP reported to date. The data reported here are similar to those reported for previous romiplostim studies, with romiplostim able to safely induce a rapid platelet response in adult ITP patients with low platelet counts or bleeding symptoms. Romiplostim is an important, well-tolerated, treatment option for adult ITP patients, which significantly increases and maintains platelet counts. Adverse Event Subject Incidence Platelet Response Disclosures: Janssens: Amgen: Consultancy; Roche: Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Tarantino:Cangene corporation: Research Funding; Baxter: Research Funding; Talecris: Honoraria, Speakers Bureau; Up-to-date: Patents & Royalties; The Bleeding and Clotting Disorders Institute: Board Member. Bird:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Boccia:Amgen: Equity Ownership, Honoraria, Speakers Bureau. Lopez-Fernandez:Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kozak:Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Steurer:Amgen: Honoraria. Dillingham:Amgen Limited: Employment, Equity Ownership. Lizambri:Amgen: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4765-4765
Author(s):  
Adrian Alegre ◽  
Merche Gironella ◽  
Juan Miguel Bergua ◽  
Esther Gonzalez ◽  
Fernando Escalante ◽  
...  

Abstract Introduction: Despite the great medical advances associated with the introduction of thalidomide, bortezomib (BORT), and lenalidomide (LEN) for the treatment of multiple myeloma (MM), it remains an incurable disease. Most patients (pts) show disease progression, consistent with the clinical evolution of MM, and only a low percentage achieve long-term responses and extended progression-free survival (PFS). The heterogeneous nature of MM in both the clinical and biological setting is reflected in the heterogeneity of MM relapses. The International Myeloma Workshop Consensus Panel (Rajkumar, Blood 2011) states that treatment (Tx) shall begin either at clinical relapse with symptoms (clinR), or in the event of asymptomatic relapse with significant paraprotein relapse, biological relapse (BR). The purpose of this Spanish registry is to describe MM relapse patterns comparing the impact of Tx decisions in pts who meet the criteria for biological relapse (BR) according to IMWG criteria with those in whom Tx was delayed until clinical relapse (clinR). Here, the preliminary results of this study are presented. Methods: MM pts in (or previous to) first or second BR who have achieved ≥ PR since their last Tx are eligible for inclusion in this observational prospective registry at the time BR is detected. Evaluations performed at least bi-monthly are mandatory. A total of 41 Spanish sites participated in the registry following approval from their independent ethics committees, with 410 pts expected to be included, without physician’s decision of prescribing Tx affecting the inclusion. The main objective of the registry is to assess the time to progression (TTP) from the start of anti-MM Tx at the onset of asymptomatic BR vs. the start of Tx at the time of clinR. Secondary objectives are to describe demographics of BR; to assess the median time elapsing from BR to clinR; to assess overall response rate (ORR), event-free survival (EFS), PFS, overall survival (OS) at BR and at clinR (if appropriate); to asses safety and quality of life (QoL) using 2 validated questionnaires (European Organisation for Research and Treatment of Cancer [EORTC] QLQ-C30 and QLQ-MY24); to document the tolerability profile of the Tx; and to describe the use of associated resources. Here, we summarize baseline characteristics and preliminary results from 83 pts (out of 126 registered pts) who had basal data in the registry at the time of this report. Results: Overall, 79% of pts presented with a BR and 21% were in a bi-monthly watchful waiting follow up. The mean age of pts was 67 years, 53% were female, 57% were in first relapse, 43% and 27% had an ECOG performance status (PS) of 0 and 1, respectively, while the ECOG PS was unknown in 30% of pts at the time of this report. In total, 30% of pts had ISS stage I, 26% had ISS stage II, and 22% had ISS stage III, while ISS stage data were not available or unknown for 12% and 10% of pts, respectively. MM types were IgG Κ (37% of pts), IgG λ (23%), IgA Κ (13%), IgA λ (9%), and type was unknown in 17% of pts. 28% of IgG/IgA MM types were Bence-Jones. Cytogenetic risk assessments were available in 66% of pts. Among those pts with a BR, 51% received active Tx without waiting for a ClinR. First-line Tx was BORT-based in 70% of pts. Overall, 55% of pts had undergone autologous stem cell transplantation, 15% had received consolidation Tx and 34% had received maintenance Tx. After first-line Tx, 17% of pts achieved a stringent complete response (sCR), 31% achieved a CR, 24% achieved a very good partial response (VGPR), and 10% achieved a PR. The median time to BR was 24.53 months. Most (63%) pts who registered after second relapse received LEN-based Tx. Conclusions: To our knowledge, this is the first prospective study in MM to evaluate BR as well as the effects of Tx based on the decision to start Tx at BR vs. clinR. In this preliminary cohort, the physicians’ decision to start active Tx at BR, before the onset of clinR in 50% of cases, was noteworthy. Further follow-up is needed to identify the differences between these two strategies. Updated clinical results will be presented at the meeting. MM-BR Study, Spanish Myeloma Group-GEM/PETHEMA Bibliography Alegre A, et al. Haematologica. 2002;87:609-14. Brioli A, et al. Blood. 2014;123:3414-9. Fernández de Larrea C, et al. Bone Marrow Transplant. 2014;49:223-7. Lenhoff S, et al. Haematologica. 2006;91:1228-33. Rajkumar SV, et al. Blood. 2011;117:4691-5. Zamarin D, et al. Bone Marrow Transplant. 2013;48:419-24. Disclosures Alegre: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jansen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Lahuerta:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Ruiz:Celgene: Celgene Stock options as part of the employee's compensation plan Other, Employment. Vilanova:Celgene: Contracted by Celgene Other.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2803-2803 ◽  
Author(s):  
Lisa Pieri ◽  
Chiara Paoli ◽  
Umberto Arena ◽  
Fabio Marra ◽  
Fabio Mori ◽  
...  

Abstract Background: Philadelphia-negative Myeloproliferative Neoplasms (MPN) include Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Myelofibrosis, both Primary (PMF) and secondary to PV or ET (PPV-MF and PET-MF). A MPN is frequently the underlying cause of splanchnic vein thrombosis (SVT). Ruxolitinib, a JAK1/2 inhibitor, efficiently reduced spleen volume and improved symptoms in patients (pts) with MF and PV in the COMFORT-I/II and RESPONSE phase III trials, and in ET pts in a phase II study. We reported (Blood 2014 124:3192) that ruxolitinib was safe in pts with MPN associated to SVT and effective in reducing spleen size at the planned primary endpoint analysis at 24 weeks (w) in a phase II clinical trial. Herein we present follow up data with cut off at 1 year after core period (a total of 72 w of treatment). Methods: Main enrolment criteria included diagnosis of PV, ET, PMF or PPV-/PET-MF associated with SVT, splenomegaly >5 cm below costal margin (bcm), active anticoagulant or antiaggregant thrombosis prophylaxis, platelet count (plt) >100 x109/L, neutrophils count >1x109/L, normal hepatic and renal function, absence of esophageal varices >grade 2. Pts who completed the 24 w of study treatment and tolerated well the drug and had evidence of clinically-significant improvement were allowed to enter an extension phase aimed at collecting and reviewing safety and efficacy data. The drug was provided free of charge by Novartis, that had no role in trial design nor in data analysis. Results: Diagnosis of MPN were: PMF 8 (38.1%), PV 5 (23.8%), ET 4 (19.1%), PPV-MF 3 (14.3%), PET-MF 1 (4.8%). Nineteen pts had spleno-porto-mesenteric thrombosis and 3 Budd-Chiari syndrome (BCS); one pt had both sites involved. Initial dose of ruxolitinib was 10 mg BID for PV, 25 mg BID for ET, 15 mg BID for MF pts with baseline (bl) platelet count of 100 to 200x109/L and 20 mg BID for platelet count >200x109/L. Currently 17/21 pts are on active treatment, 14 completed w72; final data for all 17 pts will be available at meeting. One pt with MF discontinued from the study being shifted to commercial ruxolitinib at w60, one ET and one MF pt discontinued for inefficacy at w24 and one MF pt for an unrelated adverse event after w72. Efficacy: 13/21 (61.9%) pts obtained a ≥50% spleen length (sl) reduction by palpation at w24, that was maintained at w72 in 8/14 pts (57.1%). Median sl reduction at w72 was 63% (range 0-100). No significant differences in resistive or pulsatility index of splanchnic artery were noted, nor in esophageal varices status evaluated at w72. 10/11 evaluated pts with echocardiography at w72 showed a median reduction of the cardiac output of 20.1% (range 2.3-42.2) mainly due to a reduction of heart rate and of cardiac index (-21.9%, range 8.8-44.3) due to increase in body surface area. The first effect could be attributed to decrease of proinflammatory cytokines, the second to weight gain associated with ruxolitinib. Symptomatology was evaluated by MPN-SAF up to w24, showing a median total symptom score reduction from 65 to 42. Safety: regardless of drug relationship, the most common adverse events (AE) (% any grade, % grade ≥3) were thrombocythopenia (57.1%; 14.3%) and anemia (33.3%, 19%) that were the main reasons for dose adjustments. Other AE included AST or ALT increase (42.9%, 0%), diarrhea (28.6%, 0%), abdominal pain (23.8%, 0%), ascites (19%, 0%), fever (23.8%, 0%), neutropenia, (9.5%, 9.5%), upper airways infection (19%, 0%), weight gain (14.3%, 4.8%), muscle cramps (14.3%, 0%). Three serious AE occurred: one case of hepatocarcinoma in a pts with BCS, one grade 2 pneumonia and one grade 2 haematemesis not related to esophageal varices. Median ruxolitinib total daily dose at w72, after dose adjustments, was 19.1 mg for MF, 16 mg for PV and 28.3 mg for ET. Median hemoglobin reduced from 12.9 gr/dL (range 9.4-16.7) at bl to 10.7 (8.4-14.4) at w16 and recovered at w72 (12.1, range 10.8-14.7). No pts received transfusions. Median platelet count was 212 x109/L (100-389) at bl, reached to the lowest level at w4 (139, range 48-252) and improved to 160 (69-285) at w72. Median leukocyte count decreased from 7.3 x109/L (1.8-16.4) at bl to 4.08 (1.2-21.7) at w 24, and remained substantially stable through w 72 (4.96; range 2.45-17.3). Median reduction of JAK2 allele burden at w72 was 9% (range 0-38). Conclusions: At w 72 follow up, ruxolitinib continues to be safe in pts with MPN associated to SVT and maintains efficacy against splenomegaly in 57% of the pts. Disclosures De Stefano: Roche: Research Funding; GlaxoSmithKline: Speakers Bureau; Bruno Farmaceutici: Research Funding; Novartis: Research Funding, Speakers Bureau; Janssen Cilag: Research Funding; Celgene: Speakers Bureau; Shire: Speakers Bureau; Amgen: Speakers Bureau. Barbui:Novartis: Speakers Bureau. Vannucchi:Novartis: Other: Research Funding paid to institution (University of Florence), Research Funding; Shire: Speakers Bureau; Baxalta: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 833-833 ◽  
Author(s):  
Stephan Stilgenbauer ◽  
Jeffrey A. Jones ◽  
Steven Coutre ◽  
Anthony R. Mato ◽  
Peter Hillmen ◽  
...  

Abstract Background: Patients (pts) with deletion 17p (del17p) CLL follow an aggressive clinical course and experience poor outcomes with chemoimmunotherapy. Ibrutinib, an oral inhibitor of Bruton's tyrosine kinase (BTK), is approved for pts with CLL with ≥1 prior therapy and for pts with del17p CLL (including first-line). In the phase 2 RESONATE-17 study (PCYC-1117), ibrutinib demonstrated high efficacy with a favorable risk-benefit profile in del17p CLL/SLL (O'Brien, ASH 2014). We evaluate the baseline genetic features and prognostic factors of these pts to determine their impact on outcome. Methods: Pts with del17p CLL or SLL defined by peripheral blood FISH who failed ≥1 therapy received 420 mg oral ibrutinib once daily until progression or unacceptable toxicity. Using the primary analysis data cut, the overall response rate (ORR; iwCLL 2008 criteria by investigators), progression-free survival (PFS), and overall survival (OS) were assessed by subgroup. Results: Among 144 treated pts (137 CLL, 7 SLL), the median age was 64 (range 36-89). At baseline, 63% of pts had Rai stage III or IV disease, and 39% had received ≥3 prior therapies. Baseline cytogenetics included del11q (16%), del13q (74%), and trisomy 12 (17%), in addition to del17p in all pts. Of 116 pts with valid baseline genomic samples, IGHV status was unmutated in 84%; genomic variants that included mutations, rearrangements, insertions, deletions, and copy number variants affecting coding regions were identified as follows: ATM (14%), BIRC3 (3%), BTK (1%), MYC (2%), MYD88 (2%), NOTCH1 (16%), PLCG2 (3%), SF3B1 (27%), and TP53 (92%), which were consistent with previously identified mutations in pts with CLL (Wang, NEJM 2011; Winkelmann, Haematologica 2015). At a median follow-up of 11.5 months, the investigator-assessed ORR including partial response with lymphocytosis (PR-L) for all treated pts was 83% (17% PR-L). Median PFS and OS were not reached, with 12-month PFS and OS rates of 79% and 84%. Any-grade adverse events (≥15%) included diarrhea (36%), fatigue (31%), cough (24%), arthralgia (22%), nausea (19%), hypertension (19%), anemia (19%), pyrexia (17%), decreased appetite (17%), muscle spasms (17%), neutropenia (17%), and peripheral edema (15%). Serious AEs occurred in 40% of pts (38% ≥ grade 3). ORR, 12-month PFS, and 12-month OS are presented by subgroup for baseline characteristics, cytogenetics, and genomic variants (Table). There were no substantial differences in response rates and survival outcomes in the subgroups with and without baseline cytogenetic aberrations or genomic variants (Table). Response rates were similar for pts with and without NOTCH1 or SF3B1 variants. Of 11 pts with del17p CLL who developed Richter transformation, baseline aberrations included ATM (n=2), SF3B1 (n=3), and/or NOTCH1 (n=3); none had BIRC3 variants. Overall at baseline, there were 3 pts with a PLCG2 mutation (L163F, H193Q, P236L), and 1 with a BTK mutation (R236Q); all achieved a best overall response of PR-L or better. None had received prior therapy with a BTK or PI3K inhibitor. Two pts had a baseline MYD88 mutation (L265P, L142F) with a best overall response of PR in 1 pt. Two pts had baseline MYC amplifications with 5 of 5 exons amplified to 6 and 7 copies, respectively; 1 pt achieved a best overall response of PR. Conclusions: These results provide further evidence of ibrutinib's robust clinical activity and encouraging survival outcomes in this high-risk population regardless of baseline cytogenetic aberrations or genomic variants. The prognostic role of these clinical characteristics and genetic anomalies will continue to be elucidated with longer term follow-up of this population. Figure 1. Investigator-assessed efficacy outcomes by subgroups Figure 1. Investigator-assessed efficacy outcomes by subgroups Disclosures Stilgenbauer: AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pharmacyclics LLC, an AbbVie Company: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Jones:Pharmacyclics LLC, an AbbVie Company: Consultancy, Research Funding; AbbVie: Research Funding. Coutre:AbbVie: Research Funding; Pharmacyclics LLC, an AbbVie Company: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees. Mato:Celgene: Consultancy, Other: Travel, Accommodations, Expenses, Research Funding; TA Therapeutics: Research Funding; Gilead: Consultancy, Other: Travel, Accommodations, Expenses; Pharmacyclics LLC, an AbbVie Company: Consultancy, Other: Travel, Accommodations, Expenses. Hillmen:AbbVie: Honoraria, Research Funding; Roche Pharmaceuticals: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Celgene: Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Pharmacyclics LLC, an AbbVie Company: Honoraria, Research Funding; Gilead: Honoraria, Research Funding. Tam:Janssen: Consultancy, Honoraria, Research Funding. Osterborg:Gilead: Honoraria; Janssen: Honoraria, Research Funding; GSK: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding; Amgen: Research Funding. Siddiqi:Pharmacyclics: Research Funding, Speakers Bureau; Janssen: Speakers Bureau. Thirman:Gilead: Research Funding; Merck: Research Funding; AbbVie: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding. Furman:Gilead: Consultancy; Acerta Pharma BV: Research Funding; Pharmacyclics LLC, an AbbVie Company: Consultancy, Honoraria, Speakers Bureau. Li:Pharmacyclics LLC, an AbbVie Company: Employment. Eckert:Pharmacyclics LLC, an AbbVie Company: Employment. Chang:Pharmacyclics LLC, an AbbVie Company: Employment. James:Pharmacyclics LLC, an AbbVie Company: Employment. Chu:Pharmacyclics LLC, an AbbVie Company: Employment. Hallek:Pharmacyclics LLC, an AbbVie Company: Consultancy, Speakers Bureau; Janssen: Speakers Bureau. O'Brien:Pharmacyclics LLC, an AbbVie Company: Consultancy, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3160-3160
Author(s):  
Ondine Walter ◽  
Agnès Ribes ◽  
Johanne Germain ◽  
Jean-Baptiste Rieu ◽  
Thibault Comont ◽  
...  

Abstract Introduction: Immune thrombocytopenia (ITP) is an autoimmune disease due to peripheral destruction but also impaired central production of platelets. Autoimmune reaction directed against megakaryocytes (MKs) has been described, and may explain morphological abnormalities of MKs observed in some patients with primary ITP. Thrombopoietin receptor agonists (TPO-RAs) are indicated as second-line treatments for ITP, but no predictive factors of response used in clinical routine practice has been demonstrated. The utility of systematic bone marrow smears (BMS) at ITP diagnosis is discussed. Howerer, it is usually recommended before second-line treatments. Two studies have suggested an association between MK abnormalities and response to corticosteroids in primary ITP, but none have investigated this association for TPO-RAs. This study aimed to investigate the association between MK abnormalities and response to TPO-RAs in adult patients with primary ITP. Methods: The source of population was the CARMEN registry. The CARMEN (Cytopénies Auto-immunes: Registre Midi-PyréneEN) registry is aimed at the prospective follow-up of all incident ITP adults in the French Midi-Pyrénées region (South-West of France, 3 million inhabitants) since June 2013. Each investigator follows all adult patients (aged ≥18 years) with incident ITP in routine visit or hospital stay. ITP was defined by international definition (platelet count &lt;100 x 10 9/L and exclusion of other causes of thrombocytopenia). The study population consisted in all patients included in the CARMEN registry between June 2013 and March 2018 with primary ITP, treated by TPO-RA and with a BMS before initiating TPO-RA. We excluded the patients with a number of MKs &lt;10 MK on the BMS. Morphological abnormalities were established based on literature and defined by consensus among 3 expert cytologists (AR, JBR and VDM). All MKs present on each smear were analyzed. MKs were categorized by the presence of dysplasia (monolobed MK and/or separated nuclei and/or microMKs), and according to their stage of maturation (basophilic, granular and thrombocytogenic). All patients' medical charts were reviewed by two experts in ITP (OW and GM) to determine the response to TPO-RAs. Response was defined by a platelet count between 30 and 100 G/L with at least a doubling of basal platelet count according to the international definition. In case of subsequent exposure to both TPORAs in a single patient, response was defined by response to at least one TPO-RA in the main analysis. We performed a subgroup analysis by TPORAs. Results: During the study period, 451 patients with incident ITP were included in CARMEN-registry. Among them, 105 had been treated by TPO-RAs, including 65 with BMS before the exposure to TPORA. We then excluded 20 patients with secondary ITP and 7 with less than 10 MKs on the BMS. We finally included 38 patients in the analysis. Median age at diagnosis was 71 years (interquartile range - IQR: 31 - 94) and 34.2% were women. Thirty-three patients were treated with eltrombopag, 17 with romiplostim including 13 who were exposed to both TPORAs. Thirty-four (89.4%) achieved response. The median number of MKs analyzed per patient was 137 (IQR: 50 - 265). All results are presented in Table 1. In the main analysis, there was no significant difference in the median percentage of dysplastic MKs in responders (4.0%, 95% confidence interval - CI: 2.3 - 6.4) and non-responders (4.5%, 95% CI: 0.7 - 7.1). There was a trend for a higher proportion of granular MKs (4.5%, 95% CI: 3 - 6) and basophilic MKs (30.1%, 95% CI: 21.9 - 39.1) in non-responders comparing to responders (granular: 2.0%, 95% CI: 0 - 4.1; basophilic: 21.3%, 95% CI: 11.4 - 40.7). Results were similar in the subgroup of patients treated with eltrombopag (data not shown; the low number of patients treated with romiplostim precluded any analysis). Conclusion: In this study, neither MK abnormalities nor the pattern of MK maturation stages were significantly associated with response to TPO-RAs. These results do not support a systematic bone marrow smear in patients with primary ITP to look for morphological predictive factors of response to TPO-RA. Figure 1 Figure 1. Disclosures Comont: AstraZeneca: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Takeda: Honoraria, Research Funding; Abbvie: Honoraria, Research Funding. Moulis: Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Grifols: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sobi: Membership on an entity's Board of Directors or advisory committees; Argenx: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3060-3060
Author(s):  
Marion Eveillard ◽  
Even H Rustad ◽  
Mikhail Roshal ◽  
Yanming Zhang ◽  
Amanda Kathryn Ciardiello ◽  
...  

Introduction In multiple myeloma (MM), the absence of measurable residual disease (MRD) after completed therapy is associated with longer progression free survival. Different techniques are available to detect low levels of plasma cells in bone marrow (BM) either by flow cytometry or by next-generation sequencing as a gold standard of molecular methods. But these techniques are limited because they require a representative bone marrow sample obtained by an invasive procedure. Therefore, detecting low levels of disease in blood would be ideal, because serial sampling is much easier and fully representative, and it would allow for the detection of extramedullary disease. Mass spectrometry-based methods have been shown to be more sensitive for detecting monoclonal proteins (M-protein) in serum. In this study, we were motivated to evaluate MALDI-TOF mass spectrometry (MALDI-TOF MS) head-to-head with an established BM-based MRD assays. Patients and Methods This cohort included 71 patients treated at Memorial Sloan Kettering Cancer Center (MSKCC) who had serum samples available at 2 timepoints including during active disease and within 60 days of MRD results as determined by flow cytometry of bone marrow aspirates (Flow-BM-MRD). The cohort enrolled 26 females and 45 males with a median age of 61 years (range 37-78 years). Twenty-seven patients had high-risk cytogenetics at baseline. The median time between diagnosis and the MRD timepoint was 13.4 months (3.4-91 months). MALDI-TOF MS analysis was performed according to the method published by Mills et al. Immunoglobulins were purified from serum samples using CaptureSelect beads specific of each isotype and were then eluted from the beads. Light chains and heavy chains were separated by the addition of a reducing agent. Purified samples were mixed in matrix and spotted onto a stainless steel MALDI plate and were analyzed using a Microflex LT MALDI-TOF mass spectrometer (Bruker). Samples taken during active disease were used to identify the mass to charge ratio (m/z) of the M-protein and served as a surrogate marker in the analysis of subsequent samples. MALDI-TOF MS results were compared to the Flow-BM-MRD assay, performed using the MSKCC's ten-color, single-tube method. Results MALDI-TOF MS detected an M-protein in all 71 active disease samples and in 25 MRD samples. MALDI-TOF-MS results at the MRD timepoint were concordant with Flow-BM-MRD for 44/71 patients (p=0.342, chi-square test). Eight patients were positive and 36 negative by both techniques. Twenty-seven patients were discordant, including 10 patients detectable only by Flow-BM-MRD and 17 detectable only by MALDI-TOF MS. Among the 10 patients detectable by flow cytometry but not by MALDI, the median MRD level was 0.00092% (+<0.0001% - 0.011%). The M-protein could have been present but below the polyclonal background. Regarding the 17 patients positive only by MALDI-TOF-MS, the BM sample for flow analysis was not suitable for 3 patients due to hemodilution. The others 14 samples reached the target of sensitivity with a limit of detection of 0.0001%. Alternatively, the MALDI-TOF result could be a false positive in terms of disease detection. MS is likely not falsely detecting M-proteins and indeed, immunofixation was also positive in 11/17 of these samples. However, low levels of M-protein may not indicate the presence of active disease. Indeed, a confounding factor is that immunoglobulins have a long half-life in serum. To determine the clinical utility of more sensitive M-protein detection, we evaluated the clinical outcome for the 48 newly diagnosed MM patients in CR at the MRD timepoint with a median follow-up of 11 months. Of these 48 patients, 2 of the 3 that were positive by both techniques relapsed during follow-up. One out of 27 patients that were negative by both techniques relapsed. None of the 10 patients who were positive only by MALDI-TOF relapsed and 1 of the 8 patients who were positive only by Flow-BM-MRD relapsed. Conclusions This study is important because it is a first step in understanding how to use a more sensitive blood test for the follow-up of MM patients. MALDI-TOF MS analysis may provide complementary results to Flow-BM-MRD especially for the follow-up of patients in CR and during maintenance therapy to detect poor responders that would be positive by both techniques. In summary, our results suggest that MALDI-TOF may be quite useful for early detection of relapse. Disclosures Roshal: Physicians' Education Resource: Other: Provision of services; Celgene: Other: Provision of Services; Auron Therapeutics: Equity Ownership, Other: Provision of services. Hassoun:Celgene: Research Funding; Janssen: Research Funding; Novartis: Consultancy. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Lesokhin:Takeda: Consultancy, Honoraria; Serametrix Inc.: Patents & Royalties; Genentech: Research Funding; GenMab: Consultancy, Honoraria; BMS: Consultancy, Honoraria, Research Funding; Janssen: Research Funding; Juno: Consultancy, Honoraria. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Landgren:Abbvie: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Theradex: Other: IDMC; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck: Other: IDMC; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3952-3952 ◽  
Author(s):  
Irene Ghobrial ◽  
Tiffany Poon ◽  
Meghan Rourke ◽  
Stacey Chuma ◽  
Janet Kunsman ◽  
...  

Abstract Abstract 3952 Introduction: This study aimed to determine the safety and activity of panobinostat (LBH589) in patients with relapsed or relapsed/refractory Waldenstrom Macroglobulinemia (WM). This was based on our preclinical studies showing that panobinostat induces significant activity in cell lines and patient samples. Methods: Eligibility criteria include: 1) patients with relapsed or relapsed/refractory WM with any prior lines of therapy, 2) measurable disease and symptomatic disease, 3) off prior chemotherapy> 3 weeks, or biological/novel therapy for WM > 2 weeks. Patients received panobinostat at 30 mg three times a week (Mondays, Wed and Fridays). Patients were assessed after every cycle for the first 6 cycles and then every 3 months thereafter. Subjects who had response or stable disease were allowed to continue on therapy until disease progression or unacceptable toxicity. A planned restaging was performed at the end of cycle 6 including CT scans and bone marrow biopsies. Results: Twenty-seven patients have been enrolled to date. The median age is 62 years (47-80), the median lines of prior therapy is 3 (range, 1–7). All of the patients received prior rituximab. The median hemoglobin at screening is 10.3 g/dL (range 8.2–14.3), the median IgM M-spike by protein electropheresis at study entry is 1.9 g/dL (range, 0.63–5.1), and median serum IgM at baseline is 3610 mg/dL (range, 804- 10, 300). The median bone marrow involvement at enrollment was high for patients with WM, 50%, range (5-95%), with more than 10 patients having 70% or higher bone marrow involvement at baseline. The median number of cycles on therapy is 4 (range 1 – 12). 4 of the patients came off due to toxicity. Minimal response (MR) or better has been achieved in 15 (60%) of patients, with 6 (24%) PR, 9 (36%) MR. In addition, 9 (36%) patients achieved stable disease and 1 (4%) showed progression. The median decrease in IgM is 1020 mg/dL (0- 3970 decrease in IgM) with a median % decrease of 37.13%. Responses were prompt. The median time to first response was 2 cycles (range, 2–4). Bone marrow biopsies at the end of study (or at 6 months follow up) are available on 7 patients, of which 3 showed a significant decrease in bone marrow involvement and 4 showed stable involvement. The 4 patients who had stable bone marrow disease showed 1 PR and 3 MR responses by paraprotein level. Grade 3 and 4 toxicities include 4 (15%) cases of anemia including 1 case of hemolytic anemia, 1 (3%) case of grade 4 leucopenia (but the patient had grade 3 leucopenia at baseline), 7 (26%) of neutropenia, 14 (52%) of thrombocytopenia, 1 (4%) grade 3 GI bleed due to thrombocytopenia, 1 (3%) Grade 4 hyperglycemia and 1 (3%) grade 3 syncope and 3 (27%) grade 3 fatigue. The most common grade 2 toxicities were thrombocytopenia, anemia, and fatigue. There were 5 (20%) cases of asymptomatic pulmonary infiltrates of ground glass opacity observed on routine CT scans in follow up. Of these, 3 came off study for other reasons not related to the pulmonary infiltrates, 1 received a course of corticosteroids and had improvement of infiltrates, and 1 had dose reduction of therapy. All patients except for 2 have been dose reduced due to thrombocytopenia, fatigue, diarrhea, or anemia. Dose reductions include 25 mg three times a week, 20 mg three times a week and 20 mg three times every other week. The protocol was amended to allow a starting dose of 25 mg three times a week, which is better tolerated than 30 mg in this patient population. Conclusions: Panobinostat is an active therapeutic agent in patients with relapsed or refractory WM, with an overall response rate of 60% in patients with relapsed or refractory WM. The dose schedule of 25 mg three times a week is better tolerated in this patient population. Further studies to include this agent in combination with rituximab or bortezomib are being evaluated. Disclosures: Ghobrial: Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Richardson:Keryx Biopharmaceuticals: Honoraria. Treon:Millennium Pharmaceuticals, Genentech BiOncology, Biogen IDEC, Celgene, Novartis, Cephalon: Consultancy, Honoraria, Research Funding; Celgene Corporation: Research Funding; Novartis Corporation: Research Funding; Genentech: Consultancy, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document