scholarly journals Biology and Clinical Implications of Complex Landscape of Cooperating Events in FLT3-ITD Acute Myeloid Leukemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3454-3454
Author(s):  
Katherine Tarlock ◽  
Leila Robinson ◽  
Todd A. Alonzo ◽  
Robert B. Gerbing ◽  
Yi-Cheng Wang ◽  
...  

Abstract FLT3-ITD mutations are among the most common somatic mutations in acute myeloid leukemia (AML) and are important in prognostic determination as well as therapeutic allocation. Recent studies have demonstrated improved outcomes with the addition of FLT3 inhibitors and for some patients hematopoietic stem cell transplant (HSCT) in first remission (CR1). We have previously demonstrated that the outcome of FLT3-ITD patients can be quite heterogeneous based on the co-occurrence of a few specific risk stratifying mutations, including NPM1 and NUP98-NSD1. We sought to interrogate the complex landscape of cooperating events with FLT3-ITD AML and potential impacts on outcome in the context of contemporary therapies, including the FLT3 inhibitor sorafenib. Of the 1296 children and young adult patients with de novo AML enrolled on COG AAML1031, 229 had FLT3-ITD mutations and were included in this study. Patients with high allelic ratio (HAR; >0.4) FLT3-ITD were allocated to Arm C, received sorafenib in combination with chemotherapy and received HSCT in CR1. Those with low allelic ratio (LAR; £ 0.4) FLT3-ITD were treated on Arm A/B and received chemotherapy, no sorafenib, and did not receive HSCT in CR1 unless they had evidence of residual disease following induction I (MRD³ 0.1%) or a high-risk cytogenetic feature. FLT3-ITD status and allelic ratio were determined by PCR and all samples also underwent karyotyping, FISH, and next generation sequencing in 195 (85%) of cases for determination of comprehensive co-occurring mutational profile. Among the 229 FLT3-ITD positive patients, allelic ratio ranged from <0.1-20.8, with 96 (42%) patients classified as LAR and 133 (58%) patients as HAR. Among the cohort overall, the significant majority of 85% (n=195) harbored a cooperating genomic aberration. The most common co-occurring single gene mutations were: WT1 (31%, n=71), NPM1 (20%, n=46), NRAS (9.2%, n=21), FLT3-TKD (7%, n=16), CEBPA (6.5%, n=15), KMT2A-PTD (5.7%, n=13) (Figure 1A). KMT2A-PTD lesions were significantly more prevalent among FLT3-ITD vs non ITD patients, 5.7% vs. 0.65% (p<0.001). Normal karyotype was detected in 50% of patients. The most common recurring cytogenetic abnormalities were NUP98-NSD1/t(5;11) fusions (19.2%, n=44), trisomy 8 (10%, n=23), DEK-NUP214/t(6;9) fusions (7%, n=16), KMT2A rearrangements (3.9%, n=9)(Figure 1A). In contrast, the other high risk abnormalities (monosomy 5/del5q, monosomy 7) were absent or exceedingly rare, while the low risk lesions t(8;21) and inv(16) were also rare (3%, n=7 each). We have previously reported outcome of the more common and risk stratifying mutations with co-occurring NUP98-NSD1 resulting in dismal prognosis regardless of treatment arm, while outcome for those with WT1 was improved with Arm C treatment and approached that of other FLT3-ITD patients(Figure 1B). Evaluation of the FLT3-ITD/trisomy 8 patients demonstrated those treated on Arm C experienced poor outcomes with an EFS of 30% and was equivalent to 29% for those on Arm A/B (p=0.96, Figure 1C), with a corresponding OS of 40% vs. 34% (p=0.66) respectively. In contrast, evaluation of outcome of the KMT2A-PTD patients demonstrated those treated on Arm C had a favorable 5-year event-free survival (EFS) of 71% vs. 23% (p=0.05) for those on Arm A/B (Figure 1D), with a corresponding 5-year overall survival (OS) of 86% vs. 46% (p=0.15) respectively. Comprehensive sequencing demonstrated the FLT3-ITD samples identified co-occurring genetic mutations or cytogenetic abnormalities in the majority of cases. Although KMT2A-PTD is rarely reported in pediatric compared to adult AML, we found it was enriched in FLT3-ITD patients and this cohort experienced favorable outcomes when treated with transplant and sorafenib. Patients with dual FLT3-ITD/trisomy 8 had suboptimal outcomes similar to other poor risk co-occurring lesions and comparable regardless of AR or treatment arm. While there was some overlap with WT1 mutations in this cohort, further investigation into prognostic impact of this cooperating event is warranted. The prognostic implications FLT3-ITD mutations vary and we provide further data that the comprehensive cooperating mutational profile is critical to understanding the prognostic implications in specific patients, and may also impact response to FLT3 inhibitor therapy. Figure 1 Figure 1. Disclosures Hylkema: Moderna: Current equity holder in publicly-traded company; Quest Diagnostics Inc: Current equity holder in publicly-traded company. Pollard: Kura Oncology: Membership on an entity's Board of Directors or advisory committees; Syndax: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Justin M. Watts ◽  
Tara Lin ◽  
Eunice S. Wang ◽  
Alice S. Mims ◽  
Elizabeth H. Cull ◽  
...  

Introduction Immunotherapy offers the promise of a new paradigm for patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). CD123, the IL-3 receptor alpha-chain, represents an attractive target for antibody therapies because of its high expression on AML/MDS blasts and leukemic stem cells compared to normal hematopoietic stem and progenitor cells. APVO436, a novel bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule, depleted CD123+ cells in AML patient samples ex vivo (Godwin et al. ASH 2017), reduced leukemia engraftment in a systemic AML xenograft model (Comeau et al. AACR 2018), and transiently reduced peripheral CD123+ cells in non-human primates with minimal cytokine release and in a dose-dependent fashion (Comeau et al. AACR 2019). These data provide a basis for the clinical application of APVO436 as a treatment in AML and MDS. Here, we report preliminary data from a first-in-human dose-escalation study of APVO436 in patients with R/R AML and high-risk MDS. Study Design/Methods This ongoing Phase 1/1b study (ClinicalTrials.gov: NCT03647800) was initiated to determine the safety, immunogenicity, pharmacokinetics, pharmacodynamics, and clinical activity of APVO436 as a single agent. Major inclusion criteria were: R/R AML with no other standard treatment option available, R/R MDS with > 5% marrow blasts or any peripheral blasts and failure of a hypomethylating agent, ECOG performance status ≤ 2, life expectancy > 2 months, white blood cells ≤ 25,000 cells/mm3, creatinine ≤ 2 x upper limit of normal (ULN), INR and PTT < 1.5 x ULN and alanine aminotransferase < 3 x ULN. Patients were not restricted from treatment due to cytogenetic or mutational status. Intravenous doses of APVO436 were administered weekly for up to six 28-day cycles (24 doses) with the option to continue dosing for up to 36 total cycles (144 doses). Flat and step dosing regimens were escalated using a safety-driven modified 3 + 3 design. Pre-medication with diphenhydramine, acetaminophen, and dexamethasone was administered starting with dose 1 to mitigate infusion related reactions (IRR) and cytokine release syndrome (CRS). First doses and increasing step doses of APVO436 were infused over 20-24 hours followed by an observation period of 24 hours or more. Bone marrow biopsies were performed every other cycle with responses assessed by European Leukemia Net 2017 criteria for AML or International Working Group (IWG) 2006 criteria for MDS. Results The data cut-off for this interim analysis was July 9, 2020. Twenty-eight patients with primary R/R AML (n=19), therapy-related R/R AML (n=3), or high-risk MDS (n=6) have been enrolled and received a cumulative total of 186 doses. The number of doses received per patient ranged from 1 to 43 (mean of 6.4 doses). Most patients discontinued treatment due to progressive disease; however, blast reduction was achieved in 2 patients, with one patient with MDS maintaining a durable response for 11 cycles before progressing. APVO436 was tolerated across all dose regimens in all cohorts tested. The most common adverse events (AEs), regardless of causality, were edema (32%), diarrhea (29%), febrile neutropenia (29%), fever (25%), hypokalemia (25%), IRR (21%), CRS (18%), chills (18%), and fatigue (18%). AEs ≥ Grade 3 occurring in more than one patient were: febrile neutropenia (25%), anemia (18%), hyperglycemia (14%), decreased platelet count (11%), CRS (11%), IRR (7%), and hypertension (7%). After observing a single dose limiting toxicity (DLT) at a flat dose of 9 µg, step dosing was implemented and no DLTs have been observed thereafter. No treatment-related anti-drug antibodies (ADA) were observed. Transient serum cytokine elevations occurred after several reported IRR and CRS events, with IL-6 most consistently elevated. Conclusions Preliminary results indicate that APVO436 is tolerated in patients with R/R AML and MDS at the doses and schedules tested to date, with a manageable safety profile. Dose escalation continues and the results will be updated for this ongoing study. Disclosures Watts: BMS: Membership on an entity's Board of Directors or advisory committees; Aptevo Therapeutics: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rafael Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees. Lin:Ono Pharmaceutical: Research Funding; Pfizer: Research Funding; Abbvie: Research Funding; Bio-Path Holdings: Research Funding; Astellas Pharma: Research Funding; Aptevo: Research Funding; Celgene: Research Funding; Genetech-Roche: Research Funding; Celyad: Research Funding; Prescient Therapeutics: Research Funding; Seattle Genetics: Research Funding; Mateon Therapeutics: Research Funding; Jazz: Research Funding; Incyte: Research Funding; Gilead Sciences: Research Funding; Trovagene: Research Funding; Tolero Pharmaceuticals: Research Funding. Wang:Abbvie: Consultancy; Macrogenics: Consultancy; Astellas: Consultancy; Jazz Pharmaceuticals: Consultancy; Bristol Meyers Squibb (Celgene): Consultancy; PTC Therapeutics: Consultancy; Stemline: Speakers Bureau; Genentech: Consultancy; Pfizer: Speakers Bureau. Mims:Leukemia and Lymphoma Society: Other: Senior Medical Director for Beat AML Study; Syndax Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Kura Oncology: Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Agios: Consultancy; Jazz Pharmaceuticals: Other: Data Safety Monitoring Board; Abbvie: Membership on an entity's Board of Directors or advisory committees. Cull:Aptevo Therapeutics: Research Funding. Patel:Agios: Consultancy; Celgene: Consultancy, Speakers Bureau; DAVA Pharmaceuticals: Honoraria; France Foundation: Honoraria. Shami:Aptevo Therapeutics: Research Funding. Walter:Aptevo Therapeutics: Research Funding. Cogle:Aptevo Therapeutics: Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Chenault:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Macpherson:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Chunyk:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. McMahan:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gross:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Stromatt:Aptevo Therapeutics: Current equity holder in publicly-traded company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Daniel J. Coleman ◽  
Brittany M. Smith ◽  
Cody Coblentz ◽  
Rowan L. Callahan ◽  
Jake VanCampen ◽  
...  

Internal Tandem Duplication mutations of Fms Related Receptor Tyrosine Kinase 3 (FLT3), known as FLT3-ITD mutations, are associated with poor prognosis in Acute Myeloid Leukemia (AML). The clinical efficacy of inhibiting FLT3 in AML is limited by the rapid development of drug resistance and relapse, underscoring a need for more potent and durable treatment strategies. The early persistence of leukemic blasts during FLT3 inhibition is a key driver of resistance. We find that in combination, inhibitors of Lysine Specific Demethylase 1 (LSD1) potentiate the activity of FLT3 inhibitors, driving synergistic cell death. This novel therapeutic approach has the potential to drive deeper therapeutic responses in FLT3-Mutant AML, delaying or preventing the development of resistance. LSD1 is a dynamic DNA-associated protein that functions as a chromatin modifier and transcription factor. LSD1 removes methylation on both lysine 4 of histone H3 (H3K4), associated with transcriptional activation, and lysine 9 (H3K9), associated with transcriptional repression. Additionally, LSD1 has been reported to function as a transcription factor independent of its catalytic demethylase function. LSD1 inhibition reduces cell proliferation in several cancer types. In AML specifically, inhibition of LSD1 has been reported to activate enhancers associated with genes that promote differentiation. We hypothesized that combining LSD1 inhibition with FLT3 inhibition in FLT3-ITD AML would result in synergistic effects on cell viability through reactivating differentiation pathways and more strongly blocking proliferation. In this study, we aimed to examine the efficacy, transcriptional effects, and changes in chromatin dynamics when combining LSD1 inhibition with FLT3 inhibition in a FLT3-ITD mutant cell line and patient samples. We used matrix combination screening to determine that combining the FLT3 inhibitor Quizartinib with LSD1 inhibitors (GSK-2879552 or ORY-1001) synergistically represses cell viability in the FLT3-ITD mutant MOLM-13 cell line and in multiple primary AML samples. RNA-seq followed by Gene Set Enrichment Analysis revealed that combining LSD1 and FLT3 inhibition synergistically represses target genes of the oncogenic transcription factor MYC. This finding was corroborated through high-throughput genome-wide profiling of histone marks, using the recently developed technique Cleavage Under Targets and Tagmentation (CUT&Tag). Specifically, we discovered several promoter regions in which acetylation of lysine 27 of Histone H3 (H3K27Ac), associated with transcriptional activation, was repressed by combining LSD1 and FLT3 inhibition. The genes associated with these regions were strongly enriched for known MYC target genes. Through additional genomic profiling methods including ChIP-seq and ATAC-seq, we have established potential roles for several DNA-binding transcription factors including CEBPA, RUNX1, STAT5, and LSD1 itself, that may mediate repression of MYC function resulting from combining LSD1 and FLT3 inhibition. Together, our work establishes LSD1 and FLT3 inhibitor combinations as a promising treatment strategy in FLT3-ITD AML. Importantly, this study identifies combined FLT3 and LSD1 inhibition as an effective strategy to indirectly target MYC function, as MYC is often referred to as an "undruggable" target. Furthermore, it has the potential to drive deeper molecular responses in FLT3-mutant AML, decreasing the likelihood of treatment resistance. Disclosures Druker: Bristol-Myers Squibb: Research Funding; Blueprint Medicines: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees; ARIAD: Research Funding; Cepheid: Consultancy, Membership on an entity's Board of Directors or advisory committees; Third Coast Therapeutics: Membership on an entity's Board of Directors or advisory committees; VB Therapeutics: Membership on an entity's Board of Directors or advisory committees; Millipore (formerly Upstate Biotechnology): Patents & Royalties; Pfizer: Research Funding; The RUNX1 Research Program: Membership on an entity's Board of Directors or advisory committees; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Patient True Talks: Consultancy; Oregon Health & Science University: Patents & Royalties; Novartis Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; MolecularMD (acquired by ICON): Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Henry Stewart Talks: Patents & Royalties; Iterion Therapeutics (formerly Beta Cat Pharmaceuticals): Membership on an entity's Board of Directors or advisory committees; Aptose Therapeutics Inc. (formerly Lorus): Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Merck & Co: Patents & Royalties; GRAIL: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees; Aileron Therapeutics: Membership on an entity's Board of Directors or advisory committees; McGraw Hill: Patents & Royalties; Leukemia & Lymphoma Society: Research Funding; ALLCRON: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Dana-Farber Cancer Institute: Patents & Royalties; EnLiven: Consultancy, Research Funding. Maxson:Gilead Sciences: Research Funding; Ionis Pharmaceuticals: Other: Joint oversight committee for a collaboration between OHSU and Ionis Pharmaceuticals.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1282-1282
Author(s):  
John C. Byrd ◽  
Jorge E. Cortes ◽  
Mark D. Minden ◽  
Thomas Oellerich ◽  
Eytan M. Stein ◽  
...  

Abstract Background: Spleen tyrosine kinase (SYK) is a component of both lymphoid and myeloid cell signaling pathways and has been implicated in the pathogenesis of a subset of acute myeloid leukemia (AML) defined by dysregulated expression of the HOXA9 and MEIS1 transcription factors. Entospletinib (ENTO) is an oral, selective SYK inhibitor that is acceptably tolerated when administered with intensive induction and consolidation in newly diagnosed AML patients. In a phase 2 study, following induction with cytarabine and daunorubicin (7+3) plus ENTO, higher rates of complete response (CR) or CR with incomplete hematologic recovery (CRi) were observed in patients with rearrangements of the KMT2A (MLL) gene (MLL-r) and mutations of the nucleophosmin 1 (NPM1) gene, both of which are associated with aberrant expression of HOXA9 and MEIS1, as compared to patients without these mutations. In an exploratory analysis, patients with HOXA9/MEIS1 expression levels above the median experienced superior overall survival (OS) as compared to patients with expression levels below the median. In the AGILITY trial, we hypothesize that the addition of ENTO to intensive induction/consolidation in newly diagnosed patients with NPM1-mutated AML will improve the rate of CR without evidence of measurable residual disease (MRD-negative CR) post-induction and duration of event-free survival (EFS). Methods: AGILITY will be a global, multi-center, double-blind, placebo-controlled trial of ENTO in combination with cytarabine plus daunorubicin or idarubicin induction (7+3) and age-adjusted high-dose cytarabine (HiDAC) consolidation in newly diagnosed AML patients aged 18-75 years who are candidates for intensive induction and harbor a documented NPM1 mutation based on local or central mutation testing. Patients with co-mutated FLT3 (internal tandem duplication or tyrosine kinase domain) and for whom midostaurin with 7+3 is indicated are excluded. Patients will be stratified based on age (<60 vs ≥60 years) and anthracycline administered during induction (daunorubicin vs idarubicin). Approximately 180 patients will be randomized to receive 7+3 induction and HiDAC consolidation with ENTO (400 mg orally twice daily) versus 7+3 induction and HiDAC with placebo. Patients with <5% leukemic blasts after 1 cycle of induction will proceed to the first cycle of HiDAC consolidation while patients with ≥5% residual blasts will undergo a second induction cycle. Patients who do not achieve CR after 2 cycles of chemotherapy (either 2 induction cycles or 1 induction and 1 consolidation cycle) plus ENTO or placebo will be designated as induction treatment failures (ITF). Patients who achieve or remain in CR after 2 chemotherapy cycles will be evaluated for MRD in bone marrow based on enumeration of mutant NPM1 alleles using a molecular assay. Patients may receive up to 3 cycles of consolidation with HiDAC and ENTO or placebo beyond chemotherapy cycle 2 per their original randomized treatment assignment. The number of consolidation cycles and timing of hematopoietic stem cell transplant (HSCT) or other post-consolidation therapy (if any) is at the discretion of the investigator. All patients will be followed for relapse and survival. The primary endpoint will be the rate of MRD-negative CR (<0.01% mutant NPM1 alleles). Patients without an evaluation of response and MRD after chemotherapy cycle 2 will be imputed as treatment failures for the analysis. A key secondary endpoint will be EFS, defined as time from randomization to the earliest occurrence of ITF, relapse from CR, or death from any cause. Patients without an event at the time of the EFS analysis will be censored at the last study evaluation they were event-free. EFS will be estimated using the Kaplan-Meier method and summarized by treatment group. Differences between treatment groups will be assessed with the log-rank test stratified by age (<60 vs ≥60 years) and choice of anthracycline in induction (daunorubicin vs idarubicin). OS will be analyzed in a similar manner. Key exploratory endpoints will be the correlation between recurring genomic mutations and response or progression and longitudinal assessment of peripheral blood for detection of NPM1-m alleles among patients who achieve MRD-negative CR post-induction. An independent data-monitoring committee will monitor emerging safety and efficacy data from this trial on an ongoing basis. Disclosures Byrd: Vincerx Pharmaceuticals: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Novartis, Trillium, Astellas, AstraZeneca, Pharmacyclics, Syndax: Consultancy, Honoraria; Newave: Membership on an entity's Board of Directors or advisory committees. Cortes: Bristol Myers Squibb, Daiichi Sankyo, Jazz Pharmaceuticals, Astellas, Novartis, Pfizer, Takeda, BioPath Holdings, Incyte: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Bio-Path Holdings, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Sun Pharma: Consultancy, Research Funding. Minden: Astellas: Consultancy. Oellerich: Roche: Consultancy; Gilead: Research Funding; Kronos Bio, Inc.: Consultancy; Merck KGaA: Consultancy, Research Funding. Stein: Syros Pharmaceuticals, Inc.: Consultancy; Daiichi Sankyo: Consultancy; PinotBio: Consultancy; Celgene: Consultancy; Bristol Myers Squibb: Consultancy; Jazz Pharmaceuticals: Consultancy; Foghorn Therapeutics: Consultancy; Blueprint Medicines: Consultancy; Gilead Sciences, Inc.: Consultancy; Abbvie: Consultancy; Janssen Pharmaceuticals: Consultancy; Genentech: Consultancy; Syndax Pharmaceuticals: Consultancy; Agios Pharmaceuticals, Inc: Consultancy; Novartis: Consultancy; Astellas: Consultancy. Elder: PharPoint Research, Inc.: Current Employment. Kumar: Kronos Bio, Inc.: Current Employment, Current equity holder in publicly-traded company. Bray: Kronos Bio, Inc.: Consultancy. DiMartino: Kronos Bio, Inc.: Current Employment, Current equity holder in publicly-traded company. Stock: Pfizer: Consultancy, Honoraria, Research Funding; amgen: Honoraria; agios: Honoraria; jazz: Honoraria; kura: Honoraria; kite: Honoraria; morphosys: Honoraria; servier: Honoraria; syndax: Consultancy, Honoraria; Pluristeem: Consultancy, Honoraria. OffLabel Disclosure: Entospletinib is an investigational therapy


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2693-2693
Author(s):  
Sabine Kayser ◽  
Michelle A Elliott ◽  
Marlise Luskin ◽  
Andrew M. Brunner ◽  
Michael Kramer ◽  
...  

Background: Core binding factor acute myeloid leukemia (CBF-AML) is defined by the presence of either t(8;21)(q22;q22) or inv(16)(p13.1q22)/t(16;16)(p13.1;q22) and is associated with a favorable outcome, particularly if treated with repetitive cycles of high-dose cytarabine as post-remission therapy. Long-time 10-year overall survival (OS) rate was reported of 58% in FLT3-ITD negative patients (pts; Allen et al. Leukemia 2013). Nevertheless, 30-40% CBF-AML pts experience relapse. FLT3-ITD mutations occur in roughly 5-10% of adult CBF-AML. However, their prognostic relevance is still controversial. Aims: To characterize CBF-AML with FLT3-ITD and compare outcomes according to their genetic background. Methods: We retrospectively studied 65 AML pts with CBF-AML and FLT3-ITD (median age at diagnosis, 54 years; range, 22-81 years) diagnosed between 1996 and 2018 within seven study groups/institutions of the US and Europe. Results: Thirty-two (49%) of the 65 pts harbored t(8;21). Median white blood cell and platelet counts at diagnosis of patients with t(8;21) and inv(16) were 18.3/nl (range, 1.8-202/nl) and 31/nl (range, 7-372/nl), respectively. AML diagnoses were de novo in 61 (94%) and therapy-related in 4 (6%) of the pts. Thirty (46%) pts were female. Cytogenetic analysis revealed additional abnormalities (abn) in 38 (58%) pts, most frequently loss of X or Y (n=13; n=12 associated with t(8;21)), complex karyotype (≥3 abn; n=12; n=7 occurring in t(8;21)), trisomy 22 (n=7, all associated with inv(16)) or trisomy 8 (overall n=6, n=5 occurring in inv(16)). Four pts were positive for both mutations, FLT3-ITD as well as FLT3-TKD. Median ITD allelic ratio were 0.44 (range, 0.003-50) and median ITD size 60 bp (range, 3-120 bp). Three older pts (median age, 75.5 years) were treated with either azacitidine + sorafenib, azacitidine + venetoclax or with etoposide + tipifarnib. All three patients receiving non-intensive therapy died within one year and were excluded from further analysis. Complete remission (CR) after anthracycline-based induction therapy was achieved in 98% (n=61/62) of patients fit for intensive treatment including two pts treated with 7+3 ± midostaurin within the RATIFY trial. One patient died during induction. Fifteen (24%) pts underwent allogeneic hematopoietic cell transplantation. Of those, 10 pts were transplanted in 1st and 5 pts in 2nd CR. Median follow-up for the entire cohort was 4.43 years (95%-CI, 3.35-8.97 years). Median and 4-year relapse-free survival (RFS) rates were 3.41 years (95%-CI, 1.26 years - not reached) and 44.9% (95%-CI, 32.9-61.4%). Median and 4-year overall survival rates (OS) were 4.48 years (95%-CI, 2.26 years - not reached) and 51.8% (95%-CI, 39.6.2-67.9%). Neither type of CBF-AML (p=0.60), nor additional chromosomal abn (p=0.80), nor presence of a complex karyotype (p=0.50) had a prognostic impact on OS. Higher age (≥60 years) was an in trend negative prognostic factor on RFS and OS (p=0.07, each). High allelic ratio (≥0.5) had no impact on RFS (p=0.3), but in trend on OS (p=0.10). Conclusions: Despite a high remission rate pts with FLT3-ITD had an inferior outcome as compared to previously published data on CBF-AML without FLT3-ITD. Thus, CBF-AML with FLT3-ITD should not be classified within the low-risk category. CBF pts with FLT3-ITD warrants further study and should be included in FLT3-inhibitor trials. Disclosures Brunner: Astra Zeneca: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Forty Seven Inc: Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding. Novak:Roche: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Travel,Accommodations; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Other: Travel,Accommodations; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees. Stoelzel:Neovii: Other: Travel funding; Shire: Consultancy, Other: Travel funding; JAZZ Pharmaceuticals: Consultancy. Thiede:Daiichi Sankyo: Honoraria; AgenDix GmbH: Employment, Equity Ownership; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Diaceutics: Membership on an entity's Board of Directors or advisory committees. Platzbecker:Novartis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria. Levis:Agios: Consultancy, Honoraria; Astellas: Consultancy, Research Funding; FUJIFILM: Consultancy, Research Funding; Menarini: Consultancy, Honoraria; Novartis: Consultancy, Research Funding; Daiichi Sankyo Inc: Consultancy, Honoraria; Amgen: Consultancy, Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1301-1301
Author(s):  
Christopher A. Eide ◽  
Stephen E. Kurtz ◽  
Andy Kaempf ◽  
Nicola Long ◽  
Daniel Bottomly ◽  
...  

Abstract The development of molecularly-targeted therapies to improve outcomes relative to chemotherapy for acute myeloid leukemia (AML) is impeded by the heterogeneity of genetic aberrations that contribute to disease. Among the multitude of biological mechanisms that lead to AML disease initiation and progression is dysregulation of cytokine signaling pathways, a hallmark of chronic inflammation, which contribute to the growth, survival, and differentiation state of AML cells. We have previously shown that IL-1β, a pro-inflammatory cytokine expressed by many cell types including macrophages and monocytes, stimulates proliferation of leukemic blasts independent of mutational status in primary AML samples via enhanced phosphorylation of p38α MAPK, an effect that can be blocked by IL-1 receptor knockdown or by pharmacologic inhibition (Carey 2017). Additionally, recent studies have shown sensitivity to the approved BCL2 inhibitor venetoclax in AML associates with undifferentiated leukemic cells (Pei 2020; Zhang 2018; Majumder 2020). Based on these associations, we evaluated the combination of doramapimod (DORA), a p38 MAPK inhibitor, with venetoclax (VEN) for potential enhanced sensitivity on primary AML cells. Ex vivo drug screening of primary AML patient samples (n=335) revealed significantly enhanced efficacy of VEN+DORA compared to either single agent (Nemenyi test; p<0.0001). This broad sensitivity of the VEN+DORA combination was not significantly associated with an array of clinical, genetic, and mutational features in the patient samples tested, in contrast to single agents, particularly VEN. Analysis of blood cell differential counts of patient samples tested identified increased monocyte levels were significantly correlated with sensitivity to DORA and resistance to VEN as single agents (Spearman r = -0.3 and 0.6; p<0.0001), associations that were not apparent with the combination. For patient samples with accompanying FAB differentiation state-based designations (n=108), sensitivities of the combination were similar across classifications of undifferentiated (M0/M1) through monocytic (M4/M5) acute leukemia. In contrast, single-agent VEN was significantly more sensitive in undifferentiated compared to monocytic specimens, whereas DORA sensitivity showed the reverse trend (though to a lesser degree). These differences in sensitivity were further validated by immunophenotyping data where available (n=105), which showed surface markers associated with resistance to VEN (CD11b, CD14, CD16, CD56, CD64, HLADR; Wilcoxon Rank Sum, p<0.001 to p=0.007) or sensitivity to VEN (CD117; p=0.001) or DORA (CD14; HLADR; p=0.004). By contrast, none of these associations significantly distinguished sensitivity for the VEN+DORA combination. Expression levels of MAPK14 and BCL2, the respective primary targets of DORA and VEN, were concordant with their respective drug sensitivities associated with FAB classification; that is, significantly higher levels of BCL2 in M0/M1 leukemias and MAPK14 in M4/M5 cases (Mann-Whitney test; p<0.0001; n=145). Further dissection of transcriptomic and drug sensitivity data revealed strong correlation and gene set enrichment for DORA and VEN sensitivities with monocyte-like and progenitor-like signatures, respectively (n=225), for cell differentiation states previously described for AML (van Galen 2019), and these associations diminished for the combination treatment. Lastly, the VEN+DORA combination enhanced efficacy and synergistic inhibition was confirmed using human AML cell line models tested with a matrix of potential dose concentrations. Taken together, these findings suggest that exploiting distinct, complementary sensitivity profiles of targeted therapies with respect to leukemic differentiation state, such as dual targeting of p38 MAPK and BCL2, offers an opportunity for broad, enhanced efficacy across the clinically challenging heterogeneous landscape of AML. Disclosures Druker: Novartis Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Recludix Pharma, Inc.: Consultancy; EnLiven: Consultancy, Research Funding; Pfizer: Research Funding; The RUNX1 Research Program: Membership on an entity's Board of Directors or advisory committees; Merck & Co: Patents & Royalties; Aileron: Membership on an entity's Board of Directors or advisory committees; ALLCRON: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Aptose Therapeutics: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Blueprint Medicines: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Cepheid: Consultancy, Membership on an entity's Board of Directors or advisory committees; GRAIL: Current equity holder in publicly-traded company; VB Therapeutics: Membership on an entity's Board of Directors or advisory committees; Iterion Therapeutics: Membership on an entity's Board of Directors or advisory committees; Nemucore Medical Innovations, Inc.: Consultancy; Third Coast Therapeutics: Membership on an entity's Board of Directors or advisory committees; Vincerx Pharma: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees. Tyner: Genentech: Research Funding; Takeda: Research Funding; Astrazeneca: Research Funding; Constellation: Research Funding; Agios: Research Funding; Petra: Research Funding; Incyte: Research Funding; Array: Research Funding; Gilead: Research Funding; Janssen: Research Funding; Seattle Genetics: Research Funding; Schrodinger: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3433-3433
Author(s):  
Caitlin Siebenaller ◽  
Madeline Waldron ◽  
Kelly Gaffney ◽  
Brian P. Hobbs ◽  
Ran Zhao ◽  
...  

Background: Younger patients (pts) with acute myeloid leukemia (AML) who enter a remission after intensive induction chemotherapy routinely receive at least one cycle of consolidation therapy with high dose cytarabine (HiDAC). This is commonly administered over a five-day inpatient stay, after which pts are discharged home as their blood counts nadir. It is thus a natural consequence of therapy that readmission for febrile neutropenia (FN) occurs, which can impact measures of quality and value in this population. Precise descriptions of incidence, type, and severity of infection, if identified, are lacking, and thus it is unknown to what standard cancer centers should be held for anticipated readmission. We measured these rates, and attempted to identify predictive factors for readmission. Methods: Adult AML pts ≥ 18 years of age who received at least one cycle of HiDAC consolidation (1000-3000 mg/m2 for six doses) in 2009-2019 were included. Our primary aim was to identify predictive factors for readmission after the first cycle of consolidation chemotherapy. The following pt characteristics and co-morbid conditions were analyzed: age, gender, body mass index (BMI), smoking status, AML cytogenetic risk status, history of diabetes, peripheral vascular disease, cardiovascular disease, chronic pulmonary disease, hepatic impairment, and other cancers. Secondary aims included: estimating rates of all-cause readmissions among all HiDAC cycles, defining the rate of FN readmissions, estimating rates of intensive care unit (ICU) admissions, clinical (e.g., probable pneumonia per imaging) and microbiologically-documented infections, prophylactic (ppx) medications used, and mortality. Statistical analyses interrogated potential risk factors for evidence of association with hospital readmission after the first cycle of consolidation chemotherapy. Results: We identified 182 AML pts who fit inclusion criteria. The median age was 50 years (range 19-73); 55% were female and 45% were male. Statistical analyses revealed no association with readmission after cycle 1 for cytogenetic risk (p=0.85), history of heart failure (p= 0.67), chronic pulmonary disease (p=1), connective tissue disease (p=0.53), cerebrovascular accident (p=0.63), diabetes (p=0.63), gender (p=0.07), history of lymphoma (p=0.53), other solid tumors (p=0.53), liver disease (p=1), myocardial infarction (p=0.71), peripheral vascular disease (p=1), or smoking status (p= 0.52). For 480 HiDAC cycles analyzed (88% at 3000 mg/m2), the overall readmission rate was 50% (242/480), of which 85% (205/242) were for FN. Those readmissions which were not FN were for cardiac complications (chest pain, EKG changes), non-neutropenic fevers or infections, neurotoxicity, bleeding or clotting events, or other symptoms associated with chemotherapy (nausea/vomiting, pain, etc.). Median time to FN hospital admission was 18 days (range 6-27) from the start of HiDAC. Of the 205 FN readmissions, 57% had documented infections. Of these infections, 41% were bacteremia, 23% fungal, 16% sepsis, 12% other bacterial, and 8% viral. Of 480 HiDAC cycles, ppx medications prescribed included: 92% fluoroquinolone (442/480), 81% anti-viral (389/480), 30 % anti-fungal (142/480), and 3% colony stimulating factor (14/480). Only 7% (14/205) of FN readmissions resulted in an ICU admission, and 1% (3/205) resulted in death. Conclusions: Approximately half of patients treated with consolidation therapy following intensive induction therapy can be expected to be readmitted to the hospital. The majority of FN readmissions were associated with clinical or microbiologically documented infections and are not avoidable, however ICU admission and death associated with these complications are rare. Readmission of AML pts following HiDAC is expected, and therefore, should be excluded from measures of value and quality. Disclosures Waldron: Amgen: Consultancy. Hobbs:Amgen: Research Funding; SimulStat Inc.: Consultancy. Advani:Macrogenics: Research Funding; Abbvie: Research Funding; Kite Pharmaceuticals: Consultancy; Pfizer: Honoraria, Research Funding; Amgen: Research Funding; Glycomimetics: Consultancy, Research Funding. Nazha:Incyte: Speakers Bureau; Abbvie: Consultancy; Daiichi Sankyo: Consultancy; Jazz Pharmacutical: Research Funding; Novartis: Speakers Bureau; MEI: Other: Data monitoring Committee; Tolero, Karyopharma: Honoraria. Gerds:Imago Biosciences: Research Funding; Roche: Research Funding; Celgene Corporation: Consultancy, Research Funding; Pfizer: Consultancy; CTI Biopharma: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Sierra Oncology: Research Funding. Sekeres:Syros: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Mukherjee:Partnership for Health Analytic Research, LLC (PHAR, LLC): Consultancy; McGraw Hill Hematology Oncology Board Review: Other: Editor; Projects in Knowledge: Honoraria; Celgene Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Speakers Bureau; Takeda: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5697-5697
Author(s):  
Lacey S. Williams ◽  
Catherine E. Lai

Donor cell leukemia is postulated to account for up to 5% of all leukemia "relapses" after hematopoietic stem cell transplant (SCT), though in many cases this is the first leukemia diagnosis for the patient if their transplant was for non-leukemia primary diseases. The rarity of the condition and heterogeneity of disease create challenges in diagnosis and management. In the present case, donor cell leukemia (DCL) developed in a 68-year-old female after allogeneic SCT 18 years earlier for follicular lymphoma. Only one other case of DCL after transplantation for follicular lymphoma has been reported (Boulton-Jones et al., Bone Marrow Transplantation, 2005). Furthermore, this case is atypical in that the presentation occurred many years after transplantation, since very few cases of DCL occur more than 15 years after original transplant. Case In 1993, the patient was diagnosed with stage IIIA follicular lymphoma at age 50. She achieved a complete remission with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) for 4 years. She relapsed in 1998 and received treatment with fludarabine and mitoxantrone. In 1999, she enrolled in a toxitumomab clinical trial (NCT00268203) but discontinued therapy secondary to side effects. Due to persistent disease, she proceeded with SCT and received EPOCH-F (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and fludarabine) prior to allogeneic SCT from her brother in 2000 (6/6 HLA match), augmented with TH2 cells. She received graft versus host disease (GVHD) prophylaxis with cyclosporine, however her post transplant course was complicated by engraftment syndrome and gastrointestinal and skin GVHD. In 2019, she presented to hematology for evaluation of worsening chronic neutropenia and thrombocytopenia persistent for three years, noted during work-up for symptomatic cholelithiasis. Bone marrow biopsy revealed acute myeloid leukemia (AML) with a hypocellular marrow with 30% blasts and myelodysplasia related changes. Her cytogenetics showed 46XY, +1, der(1;7)(q10;p10)/47,sl,+8/46,XY. FISH analyses demonstrated deletion 7q31 D7S486 locus in 156/200 cells (78%). NGS panel showed IDH1 (VAF16%) and U2AF1 (VAF 26%) mutations. Based on cytogenetics and chimerism studies showing 100% donor, the patient was diagnosed with donor-derived AML secondary to allogeneic SCT from her brother. The brother currently has no known hematologic problems. The patient was treated with CPX-351 (liposomal cytarabine and daunorubicin) and achieved a complete remission, followed by consolidation with CPX-351. Given her complex cytogenetics and poor prognosis, the patient proceeded to non-myeloablative haploidentical peripheral blood SCT from her son, with post-transplant cyclophosphamide. She subsequently had complications of neutropenic fever and C. dificile colitis, with progressive colitis leading to her death on day 22 after SCT. Discussion Though cytogenetic and molecular studies along with functional status assist clinicians in treatment decisions for DCL patients, the benefits and risks of treatment remain difficult to balance for this unique subset of leukemia. Of patients that achieve remission for greater than 18 months, many undergo second allogeneic SCT, however a similar number of patients have remissions of at least 18 months treated with chemotherapy alone (Wiseman, Biology of Blood and Bone Marrow Transplantation, 2011). In 15 reported cases that went to SCT, approximately 50% lived longer than 12 months after their DCL diagnosis. Second allogeneic SCT is often favored after initial remission in patients with good performance status due to high risk for relapse. This case illustrates the challenge in management of donor cell leukemia, a rather rare entity with very few cases in the literature developing greater than 15 years after transplant. Limited robust evidence favoring a particular treatment supports the need for further prospective studies. Disclosures Lai: Agios: Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Speakers Bureau; Astellas: Speakers Bureau.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Philip C. Amrein ◽  
Eyal C. Attar ◽  
Geoffrey Fell ◽  
Traci M. Blonquist ◽  
Andrew M. Brunner ◽  
...  

Introduction: Outcomes for acute myeloid leukemia (AML) among older patients has remained largely unchanged for decades. Long-term survival for patients aged >60 years is poor (median survival 10.5 months). Targeting the proteasome in AML is attractive, since leukemia stem cells have demonstrated sensitivity to proteasome inhibition in preclinical models, perhaps through down regulation of nuclear NF-KB (Guzman, Blood 2001). AML cell lines are susceptible to synergistic cytotoxicity when bortezomib, a proteasome inhibitor, is combined with daunorubicin and cytarabine. We have shown that adding bortezomib to standard treatment in AML results in a high remission rate, although grade 2 sensory neurotoxicity was noted in approximately 12% of treated patients. A newer generation proteasome inhibitor, ixazomib, is less frequently associated with neurotoxicity, and, therefore, was selected for combination with conventional chemotherapy in this phase I trial. The primary objective of this study was to determine the maximum tolerated dose (MTD) of ixazomib in combination with conventional induction and consolidation chemotherapy for AML. Herein are the initial results of this trial. Methods: Adults >60 years of age with newly diagnosed AML were screened for eligibility. Patients with secondary AML were eligible, including those with prior hypomethylating agent therapy for myelodysplastic syndromes (MDS). We excluded those with promyelocytic leukemia. There were 2 phases in this study. In the first phase (A), the induction treatment consisted of the following: cytarabine 100 mg/m2/day by continuous IV infusion, Days 1-7; daunorubicin 60 mg/m2/day IV, Days 1, 2, 3, and ixazomib was provided orally at the cohort dose, Days 2, 5, 9, and 12. Consolidaton or transplant was at the discretion of the treating physician in phase A. In the second phase (B), induction was the same as that with the determined MTD of ixazomib. All patients were to be treated with the following consolidation: cytarabine at 2 g/m2/day, days 1-5 with ixazomib on days 2, 5, 9, and 12 at the cohort dose for consolidation. A standard 3 + 3 patient cohort dose escalation design was used to determine whether the dose of ixazomib could be safely escalated in 3 cohorts (1.5 mg/day, 2.3 mg/day, 3.0 mg/day), initially in induction (phase A) and subsequently in consolidation (phase B). The determined MTD of ixazomib in the first portion (A) of the trial was used during induction in the second portion (B), which sought to determine the MTD for ixazomib during consolidation. Secondary objectives included rate of complete remission, disease-free survival, and overall survival (OS). Results: Thirty-six patients have been enrolled on study, and 28 have completed dose levels A-1 through A-3 and B1 through B-2. Full information on cohort B-3 has not yet been obtained, hence, this report covers the experience with the initial 28 patients, cohorts A-1 through B-2. There were 12 (43%) patients among the 28 with secondary AML, either with prior hematologic malignancy or therapy-related AML. Nineteen patients (68%) were male, and the median age was 68 years (range 61-80 years). There have been no grade 5 toxicities due to study drug. Three patients died early due to leukemia, 2 of which were replaced for assessment of the MTD. Nearly all the grade 3 and 4 toxicities were hematologic (Table). There was 1 DLT (grade 4 platelet count decrease extending beyond Day 42). There has been no grade 3 or 4 neurotoxicity with ixazomib to date. Among the 28 patients in the first 5 cohorts, 22 achieved complete remissions (CR) and 2 achieved CRi, for a composite remission rate (CCR) of 86%. Among the 12 patients with secondary AML 8 achieved CR and 2 achieved CRi, for a CCR of 83%. The median OS for the 28 patients has not been reached (graph). The 18-month OS estimate was 65% [90% CI, 50-85%]. Conclusions: The highest dose level (3 mg) of ixazomib planned for induction in this trial has been reached safely. For consolidation there have been no serious safety issues in the first 2 cohorts with a dose up to 2.3 mg, apart from 1 DLT in the form of delayed platelet count recovery. The recommended phase 2 dose of ixazomib for induction is 3 mg. Accrual to cohort B-3 is ongoing. Notably, to date, no grade 3 or 4 neurotoxicity has been encountered. The remission rate in this older adult population with the addition of ixazomib to standard chemotherapy appears favorable. Figure Disclosures Amrein: Amgen: Research Funding; AstraZeneca: Consultancy, Research Funding; Takeda: Research Funding. Attar:Aprea Therapeutics: Current Employment. Brunner:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Forty-Seven Inc: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. Hobbs:Constellation: Honoraria, Research Funding; Novartis: Honoraria; Incyte: Research Funding; Merck: Research Funding; Bayer: Research Funding; Jazz: Honoraria; Celgene/BMS: Honoraria. Neuberg:Celgene: Research Funding; Madrigak Pharmaceuticals: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding. Fathi:Blueprint: Consultancy; Boston Biomedical: Consultancy; BMS/Celgene: Consultancy, Research Funding; Novartis: Consultancy; Kura Oncology: Consultancy; Trillium: Consultancy; Amgen: Consultancy; Seattle Genetics: Consultancy, Research Funding; Abbvie: Consultancy; Pfizer: Consultancy; Newlink Genetics: Consultancy; Forty Seven: Consultancy; Trovagene: Consultancy; Kite: Consultancy; Daiichi Sankyo: Consultancy; Astellas: Consultancy; Amphivena: Consultancy; PTC Therapeutics: Consultancy; Agios: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Jazz: Consultancy. OffLabel Disclosure: Ixazomib is FDA approved for multiple myeloma. We are using it in this trial for acute myeloid leukemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 523-523
Author(s):  
Rasoul Pourebrahimabadi ◽  
Zoe Alaniz ◽  
Lauren B Ostermann ◽  
Hung Alex Luong ◽  
Rafael Heinz Montoya ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous disease that develops within a complex microenvironment. Reciprocal interactions between the bone marrow mesenchymal stem/stromal cells (BM-MSCs) and AML cells can promote AML progression and resistance to chemotherapy (Jacamo et al., 2014). We have recently reported that BM-MSCs derived from AML patients (n=103) highly express p53 and p21 compared to their normal counterparts (n=73 p<0.0001) (Hematologica, 2018). To assess the function of p53 in BM-MSCs, we generated traceable lineage specific mouse models targeting Mdm2 or Trp53 alleles in MSCs (Osx-Cre;mTmG;p53fl/fl and Osx-Cre;mTmG;Mdm2fl/+) or hematopoietic cells (Vav-Cre;mTmG;p53fl/fl and Vav-Cre;mTmG;Mdm2fl/+). Homozygote deletion of Mdm2 (Osx-Cre;Mdm2fl/fl) resulted in death at birth and displayed skeletal defects as well as lack of intramedullary hematopoiesis. Heterozygote deletion of Mdm2 in MSCs was dispensable for normal hematopoiesis in adult mice, however, resulted in bone marrow failure and thrombocytopenia after irradiation. Homozygote deletion of Mdm2 in hematopoietic cells (Vav-Cre;Mdm2fl/fl) was embryonically lethal but the heterozygotes were radiosensitive. We next sought to examine if p53 levels in BM-MSCs change after cellular stress imposed by AML. We generated a traceable syngeneic AML model using AML-ETO leukemia cells transplanted into Osx-Cre;mTmG mice. We found that p53 was highly induced in BM-MSCs of AML mice, further confirming our findings in primary patient samples. The population of BM-MSCs was significantly increased in bone marrow Osx-Cre;mTmG transplanted with syngeneic AML cells. Tunnel staining of bone marrow samples in this traceable syngeneic AML model showed a block in apoptosis of BM-MSCs suggesting that the expansion of BM-MSCs in AML is partly due to inhibition of apoptosis. As the leukemia progressed the number of Td-Tomato positive cells which represents hematopoietic lineage and endothelial cells were significantly decreased indicating failure of normal hematopoiesis induced by leukemia. SA-β-gal activity was significantly induced in osteoblasts derived from leukemia mice in comparison to normal mice further supporting our observation in human leukemia samples that AML induces senescence of BM-MSCs. To examine the effect of p53 on the senescence associated secretory profile (SASP) of BM-MSCs, we measured fifteen SASP cytokines by qPCR and found significant decrease in Ccl4, Cxcl12, S100a8, Il6 and Il1b upon p53 deletion in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) compared to p53 wildtype mice. To functionally evaluate the effects of p53 in BM-MSCs on AML, we deleted p53 in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) and transplanted them with syngeneic AML-ETO-Turquoise AML cells. Deletion of p53 in BM-MSCs strongly inhibited the expansion of BM-MSCs in AML and resulted in osteoblast differentiation. This suggests that expansion of BM-MSCs in AML is dependent on p53 and that deletion of p53 results in osteoblast differentiation of BM-MSCs. Importantly, deletion of p53 in BM-MSCs significantly increased the survival of AML mice. We further evaluated the effect of a Mdm2 inhibitor, DS-5272, on BM-MSCs in our traceable mouse models. DS-5272 treatment of Osx-cre;Mdm2fl/+ mice resulted in complete loss of normal hematopoietic cells indicating a non-cell autonomous regulation of apoptosis of hematopoietic cells mediated by p53 in BM-MSCs. Loss of p53 in BM-MSCs (Osx-Cre;p53fl/fl) completely rescued hematopoietic failure following Mdm2 inhibitor treatment. In conclusion, we identified p53 activation as a novel mechanism by which BM-MSCs regulate proliferation and apoptosis of hematopoietic cells. This knowledge highlights a new mechanism of hematopoietic failure after AML therapy and informs new therapeutic strategies to eliminate AML. Disclosures Khoury: Angle: Research Funding; Stemline Therapeutics: Research Funding; Kiromic: Research Funding. Bueso-Ramos:Incyte: Consultancy. Andreeff:BiolineRx: Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; NIH/NCI: Research Funding; CPRIT: Research Funding; Breast Cancer Research Foundation: Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eutropics: Equity Ownership; Aptose: Equity Ownership; Reata: Equity Ownership; 6 Dimensions Capital: Consultancy; AstaZeneca: Consultancy; Amgen: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy. OffLabel Disclosure: Mdm2 inhibitor-DS 5272


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Hassan Awada ◽  
Arda Durmaz ◽  
Carmel Gurnari ◽  
Ashwin Kishtagari ◽  
Manja Meggendorfer ◽  
...  

Genetic mutations (somatic or germline), cytogenetic abnormalities and their combinations contribute to the heterogeneity of acute myeloid leukemia (AML) phenotypes. To date, prototypic founder lesions [e.g., t(8;21), inv(16), t(15;17)] define only a fraction of AML subgroups with specific prognoses. Indeed, in a larger proportion of AML patients, somatic mutations or cytogenetic abnormalities potentially serve as driver lesions in combination with numerous acquired secondary hits. However, their combinatorial complexity can preclude the resolution of distinct genomic classifications and overlap across classical pathomorphologic AML subtypes, including de novo/primary (pAML) and secondary AML (sAML) evolving from an antecedent myeloid neoplasm (MN). These prognostically discrete AML subtypes are themselves nonspecific due to variable understanding of their pathogenetic links, especially in cases without overt dysplasia. Without dysplasia, reliance is mainly on anamnestic clinical information that might be unavailable or cannot be correctly assigned due to a short prodromal history of antecedent MN. We explored the potential of genomic markers to sub-classify AML objectively and provide unbiased personalized prognostication, irrespective of the clinicopathological information, and thus become a standard in AML assessment. We collected and analyzed genomic data from a multicenter cohort of 6788 AML patients using standard and machine learning (ML) methods. A total of 13,879 somatic mutations were identified and used to predict traditional pathomorphologic AML classifications. Logistic regression modeling (LRM) detected mutations in CEBPA (both monoallelic "CEBPAMo" and biallelic "CEBPABi"), DNMT3A, FLT3ITD, FLT3TKD, GATA2, IDH1, IDH2R140, NRAS, NPM1 and WT1 being enriched in pAML while mutations in ASXL1, RUNX1, SF3B1, SRSF2, U2AF1, -5/del(5q), -7/del(7q), -17/del(17P), del(20q), +8 and complex karyotype being prevalent in sAML. Despite these significant findings, the genomic profiles of pAML vs. sAML identified by LRM resulted in only 74% cross-validation accuracy of the predictive performance when used to re-assign them. Therefore, we applied Bayesian Latent Class Analysis that identified 4 unique genomic clusters of distinct prognoses [low risk (LR), intermediate-low risk (Int-Lo), intermediate-high risk (Int-Hi) and high risk (HR) of poor survival) that were validated by survival analysis. To link each prognostic group to pathogenetic features, we generated a random forest (RF) model that extracted invariant genomic features driving each group and resulted in 97% cross-validation accuracy when used for prognostication. The model's globally most important genomic features, quantified by mean decrease in accuracy, included NPM1MT, RUNX1MT, ASXL1MT, SRSF2MT, TP53MT, -5/del(5q), DNMT3AMT, -17/del(17p), BCOR/L1MT and others. The LR group was characterized by the highest prevalence of normal cytogenetics (88%) and NPM1MT (100%; 86% with VAF>20%) with co-occurring DNMT3AMT (52%), FLT3ITD-MT (27%; 91% with VAF <50%), IDH2R140-MT (16%, while absent IDH2R172-MT), and depletion or absence of ASXL1MT, EZH2MT, RUNX1MT, TP53MT and complex cytogenetics. Int-Lo had a higher percentage of abnormal cytogenetics cases than LR, the highest frequency of CEBPABi-MT (9%), IDH2R172K-MT (4%), FLT3ITD-MT (14%) and FLT3TKD-MT (6%) occurring without NPM1MT, while absence of NPM1MT, ASXL1MT, RUNX1MT and TP53MT. Int-Hi had the highest frequency of ASXL1MT (39%), BCOR/L1MT (16%), DNMT3AMT without NPM1MT (19%), EZH2MT (9%), RUNX1MT (52%), SF3B1MT (7%), SRSF2MT (38%) and U2AF1MT (12%). Finally, HR had the highest prevalence of abnormal cytogenetics (96%), -5/del(5q) (68%), -7del(7q) (35%), -17del(17p) (31%) and the highest odds of complex karyotype (76%) as well as TP53MT (70%). The model was then internally and externally validated using a cohort of 203 AML cases from the MD Anderson Cancer Center. The RF prognostication model and group-specific survival estimates will be available via a web-based open-access resource. In conclusion, the heterogeneity inherent in the genomic changes across nearly 7000 AML patients is too vast for traditional prediction methods. Using newer ML methods, however, we were able to decipher a set of prognostic subgroups predictive of survival, allowing us to move AML into the era of personalized medicine. Disclosures Advani: OBI: Research Funding; Abbvie: Research Funding; Macrogenics: Research Funding; Glycomimetics: Consultancy, Other: Steering committee/ honoraria, Research Funding; Immunogen: Research Funding; Seattle Genetics: Other: Advisory board/ honoraria, Research Funding; Amgen: Consultancy, Other: steering committee/ honoraria, Research Funding; Kite: Other: Advisory board/ honoraria; Pfizer: Honoraria, Research Funding; Novartis: Consultancy, Other: advisory board; Takeda: Research Funding. Ravandi:Abbvie: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Astellas: Consultancy, Honoraria, Research Funding; Orsenix: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria; Jazz Pharmaceuticals: Consultancy, Honoraria, Research Funding; Xencor: Consultancy, Honoraria, Research Funding; Macrogenics: Research Funding; BMS: Consultancy, Honoraria, Research Funding. Carraway:Novartis: Consultancy, Speakers Bureau; Takeda: Other: Independent Advisory Committe (IRC); Stemline: Consultancy, Speakers Bureau; BMS: Consultancy, Other: Research support, Speakers Bureau; Abbvie: Other: Independent Advisory Committe (IRC); ASTEX: Other: Independent Advisory Committe (IRC); Jazz: Consultancy, Speakers Bureau. Saunthararajah:EpiDestiny: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Kantarjian:Sanofi: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Honoraria, Research Funding; BMS: Research Funding; Abbvie: Honoraria, Research Funding; Aptitute Health: Honoraria; Pfizer: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Jazz: Research Funding; Immunogen: Research Funding; Adaptive biotechnologies: Honoraria; Ascentage: Research Funding; Amgen: Honoraria, Research Funding; BioAscend: Honoraria; Delta Fly: Honoraria; Janssen: Honoraria; Oxford Biomedical: Honoraria. Kadia:Pfizer: Honoraria, Research Funding; Novartis: Honoraria; Cyclacel: Research Funding; Ascentage: Research Funding; Astellas: Research Funding; Cellenkos: Research Funding; JAZZ: Honoraria, Research Funding; Astra Zeneca: Research Funding; Celgene: Research Funding; Incyte: Research Funding; Pulmotec: Research Funding; Abbvie: Honoraria, Research Funding; Genentech: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Amgen: Research Funding. Sekeres:Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda/Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document