Homodimerization of Retinoic Acid Receptor alpha through its Fusion Partners Underlies Pathogenesis of Acute Promyelocytic Leukemia.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 546-546
Author(s):  
Scott C. Kogan ◽  
Vernon T. Phan ◽  
Thomas Sternsdorf ◽  
Mei Lin Maunakea ◽  
Jastinder Sohal ◽  
...  

Abstract In almost all cases of acute promyelocytic leukemia (APL), t(15;17)(q22;q12) fuses the promyelocytic leukemia (PML) gene with the retinoic acid receptor alpha (RARA) gene. In rare cases of APL, other genes are fused to RARA including PLZF, NPM, NuMA, and STAT5b. These chimeras are collectively referred to as X-RARA fusions. Common features of the X-RARα fusions include their ability to form dimers through the X domain proteins while retaining the ability to interact with rexinoid receptors (RXRs, the proteins with which RARα normally heterodimerizes). We previously created an artificial X-RARα: p50-RARα (a fusion of the dimerization interface of p50 NFκB with the portion of RARα found in naturally occurring X-RARα proteins). p50-RARα has effects similar to PML-RARα including (i) enhancing repression at retinoic acid response elements, due to impaired release of co-repressors at low levels of all-trans retinoic acid (ATRA), and (ii) inhibiting differentiation of myeloid cell lines. We generated transgenic mice expressing p50-RARα under the control of the MRP8 promoter. p50-RARα had a minimal effect on myelopoiesis and initiated myeloid leukemias at a rate of <5% in the first year of observation. Nevertheless, transduction of p50-RARA transgenic bone marrow with a retrovirus expressing an activated cytokine receptor (βcV449E) generated leukemias with features of APL including therapeutic responsiveness to ATRA. Complementing our work with the p50-RARA transgenic mice, retroviral co-transduction of normal bone marrow with βcV449E plus either p50-RARA or PML-RARA generated APL-like myeloid leukemias. Although retrovirally generated βc/p50-RARα and βc/PML-RARα leukemias were nearly identical, the PML fusion appeared associated with a subtle decrease in differentiation relative to the p50 fusion. In contrast to these X-RARα fusions, preliminary experiments suggest that RCRα (a homodimeric form of RARα in which the dimerization interface of RARα has been replaced by the dimerization domain of the homodimeric COUP-TF transcription factor) does not readily cooperate with βcV449E to cause leukemia. This finding lends support to the hypothesis that the decreased binding site selectivity of X-RARα fusions contributes to APL pathogenesis. Furthermore, we have generated a novel X-RARα fusion, F3-RARα, in which three copies of the F36M mutant of the Rapamycin-binding protein have been fused to RARα. This protein mimics the in vitro effects of PML-RARα on transcription & differentiation, and de-dimerization of F3-RARα by rapamycin reverses these effects. Additional experiments in vivo with F3-RARα are expected to further confirm the importance of abnormal transcription factor dimerization in leukemia pathogenesis.

Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 492-497 ◽  
Author(s):  
A Biondi ◽  
A Rambaldi ◽  
PP Pandolfi ◽  
V Rossi ◽  
G Giudici ◽  
...  

Abstract The acute promyelocytic leukemia (APL) t(15;17) translocation generates a myl/retinoic acid receptor-alpha (RAR-alpha) chimeric gene that is transcribed as a fusion myl/RAR-alpha messenger RNA. Using primer sets derived from RAR-alpha and myl cDNAs, we were able to amplify the breakpoint sites of the fusion transcripts of all 35 APL RNA samples by reverse polymerase chain reaction (PCR) and nested primer approach of two rounds of amplification. DNA fragments of different size were obtained according to the chromosome 15 breakpoints (intron 3-bcr 3; exon 6-bcr 2; and intron 6-bcr 1). bcr 1 and bcr 3 represent the regions of the myl locus most frequently involved among APL (48.5 and 34.2 of cases, respectively); bcr 3 constitutes 62.5% of cases among M3V as compared with 25.9% of M3 cases. The feasibility of monitoring the APL clone by PCR analysis in five APL patients who received different treatment (chemotherapy, all-trans-retinoic acid or bone marrow transplantation) was evaluated. In five of nine bone marrow samples of patients in complete remission, t(15;17)-positive cells could be detected by PCR analysis. We conclude that PCR amplification of the myl/RAR-alpha junctions represents the easiest and rapid method for diagnosis and monitoring of the APL clone.


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 492-497 ◽  
Author(s):  
A Biondi ◽  
A Rambaldi ◽  
PP Pandolfi ◽  
V Rossi ◽  
G Giudici ◽  
...  

The acute promyelocytic leukemia (APL) t(15;17) translocation generates a myl/retinoic acid receptor-alpha (RAR-alpha) chimeric gene that is transcribed as a fusion myl/RAR-alpha messenger RNA. Using primer sets derived from RAR-alpha and myl cDNAs, we were able to amplify the breakpoint sites of the fusion transcripts of all 35 APL RNA samples by reverse polymerase chain reaction (PCR) and nested primer approach of two rounds of amplification. DNA fragments of different size were obtained according to the chromosome 15 breakpoints (intron 3-bcr 3; exon 6-bcr 2; and intron 6-bcr 1). bcr 1 and bcr 3 represent the regions of the myl locus most frequently involved among APL (48.5 and 34.2 of cases, respectively); bcr 3 constitutes 62.5% of cases among M3V as compared with 25.9% of M3 cases. The feasibility of monitoring the APL clone by PCR analysis in five APL patients who received different treatment (chemotherapy, all-trans-retinoic acid or bone marrow transplantation) was evaluated. In five of nine bone marrow samples of patients in complete remission, t(15;17)-positive cells could be detected by PCR analysis. We conclude that PCR amplification of the myl/RAR-alpha junctions represents the easiest and rapid method for diagnosis and monitoring of the APL clone.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3331-3336 ◽  
Author(s):  
D Diverio ◽  
F Lo Coco ◽  
F D'Adamo ◽  
A Biondi ◽  
M Fagioli ◽  
...  

Seventy patients with acute promyelocytic leukemia (APL) were characterized at the DNA level using genomic retinoic acid receptor- alpha (RAR-alpha) probes on Southern blot experiments. Sixty-two cases were defined as M3 according to the French-American-British (FAB) criteria, and eight had a diagnosis of microgranular or variant (M3v) APL. The use of two restriction enzymes and three probes exploring the second intron of the RAR-alpha gene allowed us to detect specific abnormal DNA fragments in every case, with clustering of rearrangements within the 20-kb intronic region between RAR-alpha exons II and III. A more detailed mapping of APL breakpoints was performed in 52 cases in which three EcoRI subregions of the RAR-alpha second intron were analyzed with corresponding probes. Comparison of clinical and hematological features in the three subgroups of patients with distinct RAR-alpha breakpoints did not show significant differences regarding age, peripheral blood (PB) counts, presence of coagulopathy, or FAB classification (M3 v M3v). Interestingly, a significant difference was observed in the M/F ratio of the three subgroups, with a higher incidence of rearrangements at the 5′ end of the RAR-alpha second intron in female patients, and more frequent 3′ breakpoints in males. The results of this study indicate that a unique genomic alteration consistently occurs on the 17q- derivative of the APL specific t(15;17) aberration. Moreover, the clinical relevance of RAR-alpha gene analysis both at diagnosis and in follow-up studies is further emphasized.


2001 ◽  
Vol 21 (21) ◽  
pp. 7172-7182 ◽  
Author(s):  
Suk-Hyun Hong ◽  
Zhihong Yang ◽  
Martin L. Privalsky

ABSTRACT The SMRT corepressor complex participates in transcriptional repression by a diverse array of vertebrate transcription factors. The ability to recruit SMRT appears to play a crucial role in leukemogenesis by the PML-retinoic acid receptor α (RARα) oncoprotein, an aberrant nuclear hormone receptor implicated in human acute promyelocytic leukemia (APL). Arsenite induces clinical remission of APL through a incompletely understood mechanism. We report here that arsenite is a potent inhibitor of the interaction of SMRT with its transcription factor partners, including PML-RARα. Arsenite operates, in part, through a mitogen-activated protein (MAP) kinase cascade culminating in phosphorylation of the SMRT protein, dissociation of SMRT from its nuclear receptor partners, and a relocalization of SMRT out of the nucleus into the cytoplasm of the cell. Conversely, inhibition of this MAP kinase cascade attenuates the effects of arsenite on APL cells. Our results implicate SMRT as an important biological target for the actions of arsenite in both normal and neoplastic cells.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3331-3336 ◽  
Author(s):  
D Diverio ◽  
F Lo Coco ◽  
F D'Adamo ◽  
A Biondi ◽  
M Fagioli ◽  
...  

Abstract Seventy patients with acute promyelocytic leukemia (APL) were characterized at the DNA level using genomic retinoic acid receptor- alpha (RAR-alpha) probes on Southern blot experiments. Sixty-two cases were defined as M3 according to the French-American-British (FAB) criteria, and eight had a diagnosis of microgranular or variant (M3v) APL. The use of two restriction enzymes and three probes exploring the second intron of the RAR-alpha gene allowed us to detect specific abnormal DNA fragments in every case, with clustering of rearrangements within the 20-kb intronic region between RAR-alpha exons II and III. A more detailed mapping of APL breakpoints was performed in 52 cases in which three EcoRI subregions of the RAR-alpha second intron were analyzed with corresponding probes. Comparison of clinical and hematological features in the three subgroups of patients with distinct RAR-alpha breakpoints did not show significant differences regarding age, peripheral blood (PB) counts, presence of coagulopathy, or FAB classification (M3 v M3v). Interestingly, a significant difference was observed in the M/F ratio of the three subgroups, with a higher incidence of rearrangements at the 5′ end of the RAR-alpha second intron in female patients, and more frequent 3′ breakpoints in males. The results of this study indicate that a unique genomic alteration consistently occurs on the 17q- derivative of the APL specific t(15;17) aberration. Moreover, the clinical relevance of RAR-alpha gene analysis both at diagnosis and in follow-up studies is further emphasized.


Blood ◽  
1994 ◽  
Vol 83 (10) ◽  
pp. 2946-2951 ◽  
Author(s):  
LR Hiorns ◽  
T Min ◽  
GJ Swansbury ◽  
A Zelent ◽  
MJ Dyer ◽  
...  

Abstract The translocation t(15;17)(q22;q21) is seen exclusively in patients with acute promyelocytic leukemia (APL) and in the promyelocytic blast crisis of chronic myeloid leukemia (CML). This translocation juxta- poses the promyelocytic leukemia (PML) gene on chromosome 15 and the retinoic acid receptor-alpha (RARA) gene on chromosome 17, resulting in the formation of a chimeric mRNA transcript. We describe a patient with the microgranular variant form of APL, with no detectable cytogenetic abnormality of either chromosomes 15 or 17, who nevertheless had juxtaposition of PML and RARA genes and expressed a chimeric transcript. Conventional cytogenetics showed the karyotype 46,XY,d- er(3)t(3;8)(p25;q12). Fluorescent in situ hybridization (FISH) with paints for chromosomes 8, 15, and 17 confirmed the presence of structurally intact chromosomes 15 and 17 and trisomy for chromosome 8q. Nevertheless, FISH using cosmid probes for PML and RARA showed their juxtaposition on one chromosome 15 homolog. Both genes were also present on their normal homologs; in addition, part of the RARA gene was still present on the remaining chromosome 17. DNA analysis by Southern blotting, performed with a variety of probes including PML, RARA and retinoic acid receptor-beta (RARB), showed a rearrangement in PML. Reverse transcriptase polymerase chain reaction (RT-PCR) confirmed the existence of hybrid transcripts of 276, 455 bp and 623 bp, from PML- RARA on the der(15) chromosome, consistent with alternate exon splicing of the long form of the transcript occurring in 50% to 60% of patients with APL. Our results show that APL patients with cytogenetically normal chromosomes 15 and 17 may, nevertheless, have involvement of both PML and RARA genes defining a subgroup of APL, t(15;17)- negative/PML-RARA-positive which is analogous to Philadelphia chromosome-negative/BCR-ABL-positive CML. In this case, the presence of chimeric transcripts suggests that treatment with all-trans RA may be warranted in APL, even in the absence of detectable cytogenetic change, showing the usefulness of RT-PCR or FISH to aid diagnosis.


2001 ◽  
Vol 193 (4) ◽  
pp. 531-544 ◽  
Author(s):  
Scott C. Kogan ◽  
Diane E. Brown ◽  
David B. Shultz ◽  
Bao-Tran H. Truong ◽  
Valerie Lallemand-Breitenbach ◽  
...  

The promyelocytic leukemia retinoic acid receptor α (PMLRARα) chimeric protein is associated with acute promyelocytic leukemia (APL). PMLRARα transgenic mice develop leukemia only after several months, suggesting that PMLRARα does not by itself confer a fully malignant phenotype. Suppression of apoptosis can have a central role in tumorigenesis; therefore, we assessed whether BCL-2 influenced the ability of PMLRARα to initiate leukemia. Evaluation of preleukemic animals showed that whereas PMLRARα alone modestly altered neutrophil maturation, the combination of PMLRARα and BCL-2 caused a marked accumulation of immature myeloid cells in bone marrow. Leukemias developed more rapidly in mice coexpressing PMLRARα and BCL-2 than in mice expressing PMLRARα alone, and all mice expressing both transgenes succumbed to leukemia by 7 mo. Although both preleukemic, doubly transgenic mice and leukemic animals had abundant promyelocytes in the bone marrow, only leukemic mice exhibited thrombocytopenia and dissemination of immature cells. Recurrent gain of chromosomes 7, 8, 10, and 15 and recurrent loss of chromosome 2 were identified in the leukemias. These chromosomal changes may be responsible for the suppression of normal hematopoiesis and dissemination characteristic of the acute leukemias. Our results indicate that genetic changes that inhibit apoptosis can cooperate with PMLRARα to initiate APL.


Sign in / Sign up

Export Citation Format

Share Document