Depolymerized Holothurian Glycosaminoglycan and Heparin Inhibit the Intrinsic Tenase Complex by a Common Antithrombin-Independent Mechanism.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1011-1011 ◽  
Author(s):  
John P. Sheehan ◽  
Erik N. Walke

Abstract Depolymerized holothurian glycosaminoglycan (DHG) is a low molecular weight form (M.W. 12,500) of fucosylated chondroitin sulfate isolated from the sea cucumber Stichopus japonicus . DHG demonstrates antithrombotic efficacy in models of thrombin-induced pulmonary thromboembolism in the mouse, venous thrombosis in the rat, and dialysis during renal failure in the dog. The in vitro anticoagulant activities and antithrombotic efficacy of DHG are antithrombin-independent, and associated with lower bleeding tendency compared to unfractionated or low molecular weight heparin (LMWH). DHG has several potential mechanisms of action including acceleration of thrombin inhibition by heparin cofactor II (HCII), inhibition of factor VIII activation by thrombin, and inhibition of factor X activation by the intrinsic tenase complex (factor IXa-factor VIIIa). DHG demonstrates significant affinity for both factor VIIIa and factor IXa, but the specific mechanism for inhibition of the intrinsic tenase complex (ITC) is undefined. We recently established the factor IXa heparin-binding exosite as the molecular target for antithrombin-independent inhibition of the ITC by LMWH (Yuan et al. Biochemistry44:3615–3625, 2005). The mechanism and molecular target for ITC inhibition by DHG was likewise determined, and compared to inhibition by LMWH. DHG completely inhibited factor X activation with a 50-fold higher apparent affinity (KI ~2 nM) than observed for partial inhibition by LMWH (KI ~111 nM). DHG reduced the Vmax(app) for factor X activation, without a significant effect on the KM(app), consistent with non-competitive inhibition. DHG did not affect the in vitro half-life of factor VIIIa activity, or inhibit chromogenic substrate cleavage by factor IXa-phospholipid. However, DHG reduced the affinity (KD(app)) of factor IXa for factor VIIIa in a dose dependent fashion, suggesting that the decreased Vmax(app) for factor X resulted from reduced complex assembly. DHG competed the binding of factor IXa to immobilized LMWH with an EC50 ~ 35-fold lower than soluble LWMH, suggesting that the binding sites for DHG and LMWH overlap on the protease. Likewise, the relative affinity of DHG for factor IXa compared to LMWH correlated with inhibitor potency. Kinetic analysis of ITC inhibition employing factor IXa with mutations in the heparin-binding exosite demonstrated that relative affinity for DHG (KI) was: wild type>K241A>H92A>R170A>>R233A; with partial rather than complete inhibition of the mutants. This rank order for DHG potency correlated with the effect of these mutations on factor IXa-LMWH affinity, and the potency of LMWH for the ITC. Submaximal inhibitory concentrations of DHG also accelerated decay of the ITC, under condition where the half-life is primarily dependent on dissociation of the factor VIIIa A2 domain. Thus, DHG binds to an exosite on factor IXa that overlaps with the binding sites for LMWH and factor VIIIa, disrupting critical factor IXa-factor VIIIa interaction(s). These structurally diverse glycosaminoglycans share a common mechanism for inhibition of factor X activation by the ITC. This inhibition occurs at DHG concentrations that are significantly lower (KI ~ 2 nM) than required for optimal acceleration of thrombin inhibition by HCII (~2.4 μM), or inhibition of factor VIII activation by thrombin (> 80 nM). Accordingly, DHG represents a lead compound for analysis of this novel antithrombotic mechanism in the absence of confounding antithrombin-dependent activities.

Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 3876-3882 ◽  
Author(s):  
John P. Sheehan ◽  
Erik N. Walke

Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chrondroitin sulfate that possesses antithrombin-independent antithrombotic properties and inhibits factor X activation by the intrinsic tenase complex (factor IXa–factor VIIIa). The mechanism and molecular target for intrinsic tenase inhibition were determined and compared with inhibition by low-molecular-weight heparin (LMWH). DHG inhibited factor X activation in a noncompetitive manner (reduced Vmax(app)), with 50-fold higher apparent affinity than LMWH. DHG did not affect factor VIIIa half-life or chromogenic substrate cleavage by factor IXa–phospholipid but reduced the affinity of factor IXa for factor VIIIa. DHG competed factor IXa binding to immobilized LMWH with an EC50 35-fold lower than soluble LWMH. Analysis of intrinsic tenase inhibition, employing factor IXa with mutations in the heparin-binding exosite, demonstrated that relative affinity (Ki) for DHG was as follows: wild type > K241A > H92A > R170A > > R233A, with partial rather than complete inhibition of the mutants. This rank order for DHG potency correlated with the effect of these mutations on factor IXa–LMWH affinity and the potency of LMWH for intrinsic tenase. DHG also accelerated decay of the intact intrinsic tenase complex. Thus, DHG binds to an exosite on factor IXa that overlaps with the binding sites for LMWH and factor VIIIa, disrupting critical factor IXa–factor VIIIa interactions.


1995 ◽  
Vol 310 (2) ◽  
pp. 427-431 ◽  
Author(s):  
S S Ahmad ◽  
R Rawala ◽  
W F Cheung ◽  
D W Stafford ◽  
P N Walsh

To study the structural requirements for factor IXa binding to platelets, we have carried out equilibrium binding studies with human factor IXa after replacing the second epidermal growth factor (EGF) domain by the corresponding polypeptide region of factor X. The chimeric protein, factor IX(Xegf2), and the wild-type, factor IXwt, produced in embryonic kidney cells 293 were radiolabelled with 125I and activated with factor XIa. Direct binding studies with thrombin-activated platelets showed normal stoichiometry and affinity of binding of factor IXawt in the presence of factor VIIIa (2 units/ml) and factor X (1.5 microM). However, under similar experimental conditions, factor IXa(Xegf2) was bound to a smaller number of sites (396 sites/platelet) with decreased affinity, i.e. a dissociation constant (Kd) of 1.4 nM, compared with normal factor IXa, factor IXaN (558 sites/platelet; Kd 0.67 nM), or factor IXawt (590 sites/platelet; Kd 0.61 nM). The concentrations of factor IXaN and factor IXawt required for half-maximal rates of factor-X activation were 0.63 nM and 0.7 nM, indicating a close correspondence of the Kd, app. for binding of factor IXawt to the factor-X activating complex on activated platelets to the Kd obtained in equilibrium binding studies. In contrast, kinetic parameters for factor-X activation by factor IXa(Xegf2) showed a decreased affinity (Kd 1.5 nM), in agreement with results of binding studies. These studies with factor IX(Xegf2) suggest that the EGF-2 domain may be important for specific high-affinity factor IXa binding to platelets in the presence of factor VIIIa and factor X.


1999 ◽  
Vol 339 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Joost A. KOLKMAN ◽  
Peter J. LENTING ◽  
Koen MERTENS

The contribution of the Factor IX catalytic domain to Factor VIIIa binding has been evaluated by functional analysis of Factor IX variants with substitutions in α-helix region 333–339 and region 301–303. These regions were found to play a prominent role in Factor VIIIa-dependent stimulation of Factor X activation, but do not contribute to the high-affinity interaction with Factor VIIIa light chain. We propose that complex assembly between Factor IXa and Factor VIIIa involves multiple interactive sites that are located on different domains of these proteins.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 398-405 ◽  
Author(s):  
R Rawala-Sheikh ◽  
SS Ahmad ◽  
DM Monroe ◽  
HR Roberts ◽  
PN Walsh

To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.


1999 ◽  
Vol 82 (08) ◽  
pp. 209-217 ◽  
Author(s):  
Patrick Celie ◽  
Joost Kolkman ◽  
Peter Lenting ◽  
Koen Mertens

IntroductionThe activation of factor X is one of the steps in the coagulation cascade that is driven by the assembly of an activated serine protease with a membrane-bound cofactor. In the initial phase of coagulation, factor X is activated by the complex of activated factor VII (factor VIIa) and tissue factor. Subsequently, during the so-called propagation phase, factor X activation is catalyzed by the complex of activated factor IX (factor IXa) and activated factor VIII (factor VIIIa). In these complexes, factor VIIa and factor IXa are the factor X-activating enzymes, whereas tissue factor and factor VIIIa serve as non-enzymatic cofactors.1 Factors VIIa and IXa are highly homologous to other cofactor-dependent enzymes, such as activated factor X (factor Xa) and activated protein C, both in amino acid sequence, domain organization, and three-dimensional structure.2 Factor VIIa and IXa further share low or negligible activity towards their natural substrate factor X, unless in complex with their physiological cofactors.Although tissue factor and factor VIIIa serve similar roles as biological amplifiers, they are structurally different. Tissue factor is a small, transmembrane protein with an extracellular part comprising 219 amino acids. Factor VIII is much larger (2,332 amino acids), circulates in plasma, and requires proteolytic processing to exert its biological activity.3 When cofactors are assembled with their respective enzymes, a dramatic increase in enzymatic activity occurs. The underlying molecular mechanism, however, remains poorly understood.During the past few years, remarkable progress has been made in understanding the molecular details of enzyme-cofactor assembly within the coagulation cascade. Crystallography has provided high-resolution structures of tissue factor4 and the various cofactor-dependent coagulation enzymes.2 Moreover, the crystal structure of the factor VIIa—tissue factor complex has been resolved and has allowed the identification of the molecular sites involved in enzyme-cofactor interaction.5,6 Such details are still lacking, however, for the factor IXa—factor VIIIa complex. Current views are derived from three-dimensional models generated by homology modeling based on structurally-related proteins, such as nitrite reductase,7 ceruloplasmin,8 and galactose oxidase.9 Despite their inherent limitations, these models greatly facilitate the interpretation of previous functional studies on factor X activation. As such, the availability of molecular models may be considered an important step toward resolving the structure of the factor IXa—factor VIIIa complex and understanding the role of complex assembly and defects thereof. This chapter provides an overview of the current developments in this field.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3081-3081
Author(s):  
Buyue Yang ◽  
John P. Sheehan

Abstract Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chrondroitin sulfate that possesses antithrombin-independent antithrombotic properties in rodent thrombosis and dog hemodialysis models. DHG demonstrates significantly less bleeding in template or tail transection assays than therapeutically equivalent doses of heparins. Several potential in vitro mechanisms have been described for DHG, including acceleration of thrombin inhibition by heparin cofactor II (HCII), inhibition of factor VIII activation by thrombin, and inhibition of factor X activation by the intrinsic tenase complex (factor IXa-factor VIIIa). The relevant mechanism(s) for inhibition of tissue factor (TF) induced plasma thrombin generation by DHG were examined in HCII or mock-immunodepleted, and factor-deficient human plasmas, using selected recombinant factor IX(a) with mutations in the heparin-binding exosite. Plasma thrombin generation was detected by fluorogenic substrate cleavage in the presence of corn trypin inhibitor to block contact activation, and compared to a standard curve generated with α2-macroglobulin-thrombin complex. The dose-dependent decrease in velocity index, a parameter reflecting the rate of thrombin generation between lag phase and peak thrombin concentration, was used to compare DHG potency. When triggered by 0.2 pM TF, the EC50 for inhibition of thrombin generation by DHG was 0.16 ± 0.01 μM in both HCII-depleted and mock-depleted plasma, suggesting that DHG acts independently of HCII. When triggered by excess (4 pM) TF, plasma thrombin generation was independent of factors VIII and IX. Under these conditions, the EC50 for DHG inhibition of thrombin generation was increased 13-fold in mock-depleted plasma (2.02 ± 0.09 μM) and 28-fold in HCII-depleted plasma (4.31 ± 0.23 μM). These results suggest that components of the intrinsic tenase complex contribute to inhibition of plasma thrombin generation by DHG, and HCII contributes only at high tissue factor concentrations. In the presence of 0.2 pM TF, Western blotting under nonreducing conditions showed preservation of the prothrombin/meizothrombin band and delayed/reduced thrombin generation in the presence of 0.5 μM DHG, confirming that the inhibition involves reduced prothrombin activation rather than accelerated thrombin inhibition. When triggered by 0.2 pM TF in factor VIII-deficient plasma supplemented with 700 pM factor VIII or thrombin-activated factor VIIIa, the EC50 for inhibition by DHG was 0.41 ± 0.02 μM and 0.44 ± 0.05 μM, respectively. Similarly, the EC50 for DHG inhibition of thrombin generation in factor IX deficient plasma supplemented with 0.2 pM TF and 100% plasma-derived factor IX (90 nM), or 100 pM plasma-derived factor IXa alone, was 0.36 ± 0.01 μM and 0.34 ± 0.02 μM, respectively. Thus, activation of factors VIII and IX do not contribute significantly to the inhibition mechanism for DHG. The contribution of intrinsic tenase activity to DHG inhibition of plasma thrombin generation was assessed using recombinant factor IX(a) mutants with moderate (R170A) or marked (R233A) reductions in heparin affinity. Factor IX deficient plasma was supplemented with 0.2 pM TF and 100% recombinant factor IX, or 100 pM factor IXa, with increasing concentrations of DHG. Similar to plasma-derived factor IX(a), DHG demonstrated an EC50 of 0.38 ± 0.01 μM for inhibition of thrombin generation in the presence of factor IX(a) wild type (WT) zymogen or protease. In the presence of factor IX(a) R170A, the EC50 for DHG was 0.86 ± 0.06 μM and 1.02 ± 0.02 μM, respectively, a 2–3 fold increase relative to WT (P ≤ 0.01). For factor IX(a) R233A, the EC50 for DHG was 3.55 ± 0.47 μM for zymogen and 2.98 ± 0.64 μM for protease, an 8–9 fold increase relative to WT (P ≤ 0.01). Thus, mutations in the factor IXa heparin-binding exosite induced resistance to DHG inhibition of thrombin generation as follows: factor IX(a) R233A> R170A> WT. These findings are consistent with the common mechanism for intrinsic tenase inhibition demonstrated for heparin and DHG in purified systems, and establish the factor IXa heparin-binding exosite as the relevant molecular target for inhibition of plasma thrombin generation by DHG. This antithrombin-independent mechanism likely mediates the antithrombotic efficacy of DHG and related glycosaminoglycans, and may represent a novel therapeutic target with lower bleeding risk.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 398-405 ◽  
Author(s):  
R Rawala-Sheikh ◽  
SS Ahmad ◽  
DM Monroe ◽  
HR Roberts ◽  
PN Walsh

Abstract To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.


1979 ◽  
Author(s):  
G.V. Dieyen ◽  
J. Rosing ◽  
G. Tans ◽  
H.C. Hemker

The kinetics of factor X activation by activated clotting factor IXa was measured either in the presence or absence of phospholipid, Ca-ions and factor VIIIa. This study was carried out with purified bovine clotting factors. The rate of factor Xa formation was measured using the chromogenic substrate S 2222. Both the Km for factor X and the Vmax of factor Xa formation were determined for different compositions of the factor X activating complex in order to get more insight in the role of phospholipid, Ca2+ and factor VIII in factor X activation. With factor IXa alone, the activation of factor X is a very inefficient process. The presence of phospholipids predominantly lowers the Km for factor X while in contrast factor VIIIa mainly increases the Vmax of factor Xa formation. The implications of these findings for the mechanism of, factor X activation in the intrinsic pathway will be discussed.


2004 ◽  
Vol 381 (3) ◽  
pp. 779-794 ◽  
Author(s):  
Mikhail A. PANTELEEV ◽  
Evgueni L. SAENKO ◽  
Natalya M. ANANYEVA ◽  
Fazoil I. ATAULLAKHANOV

Intrinsic tenase consists of activated Factors IX (IXa) and VIII (VIIIa) assembled on a negatively charged phospholipid surface. In vivo, this surface is mainly provided by activated platelets. In vitro, phosphatidylcholine/phosphatidylserine vesicles are often used to mimic natural pro-coagulant membranes. In the present study, we developed a quantitative mathematical model of Factor X activation by intrinsic tenase. We considered two situations, when complex assembly occurs on either the membrane of phospholipid vesicles or the surface of activated platelets. On the basis of existing experimental evidence, the following mechanism for the complex assembly on activated platelets was suggested: (i) Factors IXa, VIIIa and X bind to their specific platelet receptors; (ii) bound factors form complexes on the membrane: platelet-bound Factor VIIIa provides a high-affinity site for Factor X and platelet-bound Factor IXa provides a high-affinity site for Factor VIIIa; (iii) the enzyme–cofactor–substrate complex is assembled. This mechanism allowed the explanation of co-operative effects in the binding of Factors IXa, VIIIa and X to platelets. The model was reduced to obtain a single equation for the Factor X activation rate as a function of concentrations of Factors IXa, VIIIa, X and phospholipids (or platelets). The equation had a Michaelis–Menten form, where apparent Vmax and Km were functions of the factors’ concentrations and the internal kinetic constants of the system. The equation obtained can be used in both experimental studies of intrinsic tenase and mathematical modelling of the coagulation cascade. The approach of the present study can be applied to research of other membrane-dependent enzymic reactions.


1985 ◽  
Vol 53 (03) ◽  
pp. 396-400 ◽  
Author(s):  
Gerbrand van Dieijen ◽  
Jan L M L van Rijn ◽  
José W P Govers-Riemslag ◽  
H Coenraad Hemker ◽  
Jan Rosing

SummaryThe activation of blood coagulation factor X by factor IXa is strongly stimulated by the non-enzymatic cofactors phospholipid, Ca2+ and activated factor VIII. In this paper we present a method by which we were able to determine binding affinities of factor IXa for phospholipids (either in the absence or presence of factor VIIIa) from kinetic measurements of factor X activation. It is shown that rates of factor X activation in the presence of phospholipids can be saturated with an excess factor VIIIa at limiting amounts of factor IXa and vice versa. Our data indicate that the enzymatic unit in the intrinsic factor X activator is a 1:1 stoichiometrical complex of factor IXa and factor VIIIa bound to phospholipid. Titrations with factor IXa at fixed concentrations of phospholipid and factor X show that the apparent dissociation constant of factor IXa for phospholipid is lowered from 10-6 M to 10-8 M by the presence of factor VIIIa. We conclude, that in analogy with the role of factor Va in prothrombin activation, phospholipid-bound factor VIIIa functions as a high-affinity binding site (»receptor«) for factor IXa in the intrinsic factor X activating complex. Therefore, factor VIIIa increases the observed Vmax of factor X activation by 1) enhancing the kcat of the reaction and 2) increasing the amount of phospholipid-bound factor IXa that participates in factor X activation.


Sign in / Sign up

Export Citation Format

Share Document