substrate cleavage
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 20)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 478 (17) ◽  
pp. 3179-3184
Author(s):  
Amy M. Weeks

Apoptosis is a cell death program that is executed by the caspases, a family of cysteine proteases that typically cleave after aspartate residues during a proteolytic cascade that systematically dismantles the dying cell. Extensive signaling crosstalk occurs between caspase-mediated proteolysis and kinase-mediated phosphorylation, enabling integration of signals from multiple pathways into the decision to commit to apoptosis. A new study from Maluch et al. examines how phosphorylation within caspase cleavage sites impacts the efficiency of substrate cleavage. The results demonstrate that while phosphorylation in close proximity to the scissile bond is generally inhibitory, it does not necessarily abrogate substrate cleavage, but instead attenuates the rate. In some cases, this inhibition can be overcome by additional favorable substrate features. These findings suggest potential nuanced physiological roles for phosphorylation of caspase substrates with exciting implications for targeting caspases with chemical probes and therapeutics.


2021 ◽  
Vol 11 (9) ◽  
pp. 866
Author(s):  
Garrit Koller ◽  
Eva Schürholz ◽  
Thomas Ziebart ◽  
Andreas Neff ◽  
Roland Frankenberger ◽  
...  

Dental decay (Caries) and periodontal disease are globally prevalent diseases with significant clinical need for improved diagnosis. As mediators of dental disease-specific extracellular matrix degradation, proteases are promising analytes. We hypothesized that dysregulation of active proteases can be functionally linked to oral disease status and may be used for diagnosis. To address this, we examined a total of 52 patients with varying oral disease states, including healthy controls. Whole mouth saliva samples and caries biopsies were collected and subjected to analysis. Overall proteolytic and substrate specific activities were assessed using five multiplexed, fluorogenic peptides. Peptide cleavage was further described by inhibitors targeting matrix metalloproteases (MMPs) and cysteine, serine, calpain proteases (CSC). Proteolytic fingerprints, supported by supervised machine-learning analysis, were delineated by total proteolytic activity (PepE) and substrate preference combined with inhibition profiles. Caries and peridontitis showed increased enzymatic activities of MMPs with common (PepA) and divergent substrate cleavage patterns (PepE), suggesting different MMP contribution in particular disease states. Overall, sensitivity and specificity values of 84.6% and 90.0%, respectively, were attained. Thus, a combined analysis of protease derived individual and arrayed substrate cleavage rates in conjunction with inhibitor profiles may represent a sensitive and specific tool for oral disease detection.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 222
Author(s):  
Chenxin Fang ◽  
Ping Ouyang ◽  
Yuxing Yang ◽  
Yang Qing ◽  
Jialun Han ◽  
...  

A microRNA (miRNA) detection platform composed of a rolling circle amplification (RCA) system and an allosteric deoxyribozyme system is proposed, which can detect miRNA-21 rapidly and efficiently. Padlock probe hybridization with the target miRNA is achieved through complementary base pairing and the padlock probe forms a closed circular template under the action of ligase; this circular template results in RCA. In the presence of DNA polymerase, RCA proceeds and a long chain with numerous repeating units is formed. In the presence of single-stranded DNA (H1 and H2), multi-component nucleic acid enzymes (MNAzymes) are formed that have the ability to cleave substrates. Finally, substrates containing fluorescent and quenching groups and magnesium ions are added to the system to activate the MNAzyme and the substrate cleavage reaction, thus achieving fluorescence intensity amplification. The RCA–MNAzyme system has dual signal amplification and presents a sensing platform that demonstrates broad prospects in the analysis and detection of nucleic acids.


2021 ◽  
Author(s):  
Tushar Kanti Maiti ◽  
Raniki Kumari

Calpain belongs to the calcium-dependent non-lysosomal cysteine protease. Calpain-1 and calpain-2 expression are ubiquitous in mammals and an important mediator of the action of calcium. Specific substrate cleavage by calpain-1 and calpain-2 is critical for several calcium-dependent cellular pathways including neuronal function, muscle contraction, signal transduction, cell differentiation, proliferation, and apoptosis.Research suggests that calpain-1 and calpain-2 perform similar functions due to their structurally highly similar isoforms. Increasing evidence suggests that calpain-1 and calpain-2 carry out their specific function in vivo. A recent paper published by Shinkai-Ouchi et al. (Bioscience Reports (2020) 40, https://doi.org/10.1042/BSR20200552) elucidated the mechanism to differentiate the function of each calpain in respect to the efficiency and longevity for proteolysis after activation. Further, the study represented that calpain-1 and calpain-2 do not synergistically perform their workin vitro. On the other hand, the activity of calpain-1 is reduced in presence of calpain-2. This insight establishes the platform for future studies to examine how calpain-2 regulates the calpain-1 for substrate proteolysis.


2020 ◽  
Vol 253 (6) ◽  
pp. 563-576
Author(s):  
Ana-Nicoleta Bondar

AbstractTransmembrane substrate cleavage by the small Escherichia coli rhomboid protease GlpG informs on mechanisms by which lipid interactions shape reaction coordinates of membrane-embedded enzymes. Here, I review and discuss new work on the molecular picture of protein–lipid interactions that might govern the formation of the substrate–enzyme complex in fluid lipid membranes. Negatively charged PG-type lipids are of particular interest, because they are a major component of bacterial membranes. Atomistic computer simulations indicate POPG and DOPG lipids bridge remote parts of GlpG and might pre-occupy the substrate-docking site. Inhibition of catalytic activity by PG lipids could arise from ligand-like lipid binding at the active site, which could delay or prevent substrate docking. Dynamic protein–lipid H-bond networks, water access to the active site, and fluctuations in the orientation of GlpG suggest that GlpG has lipid-coupled dynamics that could shape the energy landscape of transmembrane substrate docking. Graphic Abstract


2020 ◽  
pp. jbc.RA120.016265
Author(s):  
Simon S. Terzyan ◽  
Luong T. Nguyen ◽  
Anthony W.G. Burgett ◽  
Annie Heroux ◽  
Clyde A Smith ◽  
...  

Overexpression of γ-glutamyl transpeptidase(GGT1) has been implicated in an array of humandiseases including asthma, reperfusion injury,and cancer. Inhibitors are needed for therapy, butdevelopment of potent, specific inhibitors ofGGT1 has been hampered by a lack of structuralinformation regarding substrate binding andcleavage. To enhance our understanding of themolecular mechanism of substrate cleavage, wehave solved the crystal structures of humanGGT1 (hGGT1) with glutathione (a substrate)and a phosphate-glutathione analog (anirreversible inhibitor) bound in the active site.These are the first structures of any eukaryoticGGT with the cysteinylglycine region of thesubstrate-binding site occupied. These structuresand the structure of apo-hGGT reveal movementof amino acid residues within the active site as thesubstrate binds. Asn-401 and Thr-381 each formhydrogen bonds with two atoms of GSH spanningthe γ-glutamyl bond. Three different atoms ofhGGT1 interact with the carboxyl-oxygen of thecysteine of GSH. Interactions between theenzyme and substrate change as the substratemoves deeper into the active site cleft. Thesubstrate reorients and a new hydrogen bond isformed between the substrate and the oxyanionhole. Thr-381 is locked into a singleconformation as an acyl bond forms between thesubstrate and the enzyme. These data provideinsight on a molecular level into the substratespecificity of hGGT1 and provide an explanationfor seemingly disparate observations regardingthe enzymatic activity of hGGT1 mutants. Thisknowledge will aid in the design of clinicallyuseful hGGT1 inhibitors.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A53.1-A53
Author(s):  
JA Hildebrand ◽  
D Bararia ◽  
S Stolz ◽  
S Häbe ◽  
F Osorio-Barrios ◽  
...  

BackgroundBy targeted DNA sequencing of 305 diagnostic follicular lymphoma (FL) biopsies, we identified somatic mutations of Cathepsin S (CTSS) in 8% of cases (24/305), mostly clustered at Y132 (19/24) converting Y to D (16/19). Another 13% of FL had CTSS amplifications (37/286), associated with higher CTSS expression (P=0.05). CTSS is a cysteine protease that is highly expressed in endolysosomes of antigen presenting cells and malignant B-cells. CTSS is involved in proteolytical processing of antigenic peptides for presentation on MHC-II to be recognized by antigen specific CD4+ T-cells.1 CTSS is synthesized as an inactive zymogen, which is converted to its active form by autocatalytic cleavage of the autoinhibitory propeptide (pro-CTSS).Materials and MethodsWe used CRISPR/Cas9 to introduce CTSS Y132D into Karpas422, a B-cell lymphoma cell line that harbors the FL hallmark translocation t(14;18). We purified pro-CTSS WT and Y132D and assayed the in vitro autocatalytic cleavage over time. We then tested the impact of CTSS on CD4+ T-cell activation in co-culture assays, in a previously described in vivo model2 which we slightly modified to reflect FL-like conditions, and in primary patient samples.ResultsSingle-cell derived Y132D mutant Karpas422 clones showed >3-fold higher ratios of active CTSS to pro-CTSS (N=4, P=0.0003). Immunoprecipitated CTSS Y132D had >3-fold higher in vitro substrate cleavage activity compared to CTSS wild type (WT) (N=6, P=0.001) which was mediated by an accelerated conversion from pro-CTSS to active CTSS (11 minutes for CTSS Y132D vs 17 minutes for CTSS WT; N=3, P=0.04). Molecular dynamics simulations showed that the Y132D mutation shortens the distances by ~2Å between the catalytic triad of active CTSS (C139, H278, N298) and a stretch of amino acids from the proform (L80, G81, D82, S94), which could facilitate intramolecular cleavage. The higher substrate cleavage activity of CTSS Y132D came along with a high capacity to stimulate antigen specific CD4+ T cell responses in vitro and in vivo. Additionally, CTSS overexpression could phenocopy this high CD4+ T cell activation. Lastly, we aimed to correlate CTSS aberrations with clinical outcome in patients who received standard immunochemotherapy (R-CHOP) for advanced FL (N=51 with available CTSS mutation and gene expression data). Compared to all other patients (N=34), patients with CTSS Y132 mutations or CTSS overexpression (N=17) had longer failure free survival (P=0.012).ConclusionsHere, we provide biochemical, structural, functional and clinical evidence that aberrant CTSS activity induces a supportive immune microenvironment in FL. We propose that aberrant CTSS activity can elicit a CD4+ T-cell driven tumor-promoting immune response, which could be amplified within the microenvironment and substantially impact the biology and clinical course of the disease. Thus, aberrant CTSS activity is a promising biomarker and therapeutic target in FL and potentially also other tumors.ReferencesRiese, R.J., et al., Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 1996; 4(4): p. 357–66.Kim, K.J., et al., Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol 1979; 122(2): p. 549–54.Disclosure InformationJ.A. Hildebrand: None. D. Bararia: None. S. Stolz: None. S. Häbe: None. F. Osorio-Barrios: None. M.D. Bartoschek: None. E. Gaitzsch: None. V. Jurinovic: None. K. Rautter: None. C. Ludwig: None. S. Bultmann: None. H. Leonhardt: None. S. Eustermann: None. K. Hopfner: None. W. Hiddemann: None. M. Bergwelt: None. M. Schmidt-Supprian: None. M.B. Sárosi: None. M. Rudelius: None. V. Passerini: None. J. Mautner: None. O. Weigert: None.


2020 ◽  
Vol 75 (11) ◽  
pp. 3189-3193
Author(s):  
Sebastiaan ter Horst ◽  
Yaiza Fernandez-Garcia ◽  
Marcella Bassetto ◽  
Stephan Günther ◽  
Andrea Brancale ◽  
...  

Abstract Objectives Baloxavir acid is an endonuclease inhibitor approved for use against influenza. We evaluated whether this compound also targets the endonuclease domain of orthobunyaviruses and therefore could potentially be used against orthobunyavirus infections. Methods We performed a thermal shift assay and a fluorescence resonance energy transfer (FRET)-based nuclease monitoring assay using the La Crosse virus (LACV) endonuclease and baloxavir acid to prove their interaction and identify an inhibitory effect. Their interaction was further studied in a docking simulation using Glide SP. We show that baloxavir acid inhibits the viral replication of Bunyamwera virus (BUNV)–mCherry in vitro using high-content imaging and virus yield assay. Lastly, we investigated the use of baloxavir acid in combination with ribavirin in vitro by implementing the Zero Interaction Potency response surface model. Results We show that baloxavir acid augments LACV enzyme’s melting temperature with ΔTm 9.5 ± 0.4°C and inhibited substrate cleavage with IC50 0.39 ± 0.03 μM. Moreover, our docking simulation suggests that baloxavir acid is able to establish an efficient binding with the LACV endonuclease. In the cell-based assay, we observed that baloxavir acid and ribavirin inhibited BUNV–mCherry with an EC50 of 0.7 ± 0.2 μM and 26.6 ± 8.9 μM, respectively. When used in combination, we found a maximum synergistic effect of 8.64. Conclusions The influenza endonuclease inhibitor baloxavir acid is able to bind to and interfere with the endonuclease domain of orthobunyaviruses and yields a more potent antiviral effect than ribavirin against BUNV–mCherry. The combination of both compounds results in a more potent antiviral effect, suggesting that these molecules could potentially be combined to treat orthobunyavirus-infected patients.


Immunity ◽  
2020 ◽  
Vol 53 (1) ◽  
pp. 106-114.e5 ◽  
Author(s):  
Zhonghua Liu ◽  
Chuanping Wang ◽  
Jie Yang ◽  
Yinghua Chen ◽  
Bowen Zhou ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 596
Author(s):  
Stylianos Z. Karoulias ◽  
Nandaraj Taye ◽  
Sarah Stanley ◽  
Dirk Hubmacher

Secreted a disintegrin-like and metalloprotease with thrombospondin type 1 motif (ADAMTS) proteases play crucial roles in tissue development and homeostasis. The biological and pathological functions of ADAMTS proteases are determined broadly by their respective substrates and their interactions with proteins in the pericellular and extracellular matrix. For some ADAMTS proteases, substrates have been identified and substrate cleavage has been implicated in tissue development and in disease. For other ADAMTS proteases, substrates were discovered in vitro, but the role of these proteases and the consequences of substrate cleavage in vivo remains to be established. Mutations in ADAMTS10 and ADAMTS17 cause Weill–Marchesani syndrome (WMS), a congenital syndromic disorder that affects the musculoskeletal system (short stature, pseudomuscular build, tight skin), the eyes (lens dislocation), and the heart (heart valve abnormalities). WMS can also be caused by mutations in fibrillin-1 (FBN1), which suggests that ADAMTS10 and ADAMTS17 cooperate with fibrillin-1 in a common biological pathway during tissue development and homeostasis. Here, we compare and contrast the biochemical properties of ADAMTS10 and ADAMTS17 and we summarize recent findings indicating potential biological functions in connection with fibrillin microfibrils. We also compare ADAMTS10 and ADAMTS17 with their respective sister proteases, ADAMTS6 and ADAMTS19; both were recently linked to human disorders distinct from WMS. Finally, we propose a model for the interactions and roles of these four ADAMTS proteases in the extracellular matrix.


Sign in / Sign up

Export Citation Format

Share Document