Localization of Binding Sites for Low-Density Lipoprotein Receptor in Coagulation Factor VIII.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1013-1013
Author(s):  
Evgeny M. Makogonenko ◽  
Andrey G. Sarafanov ◽  
Natalya M. Ananyeva ◽  
Dudley K. Strickland ◽  
Evgueni L. Saenko

Abstract Clearance of coagulation factor VIII (fVIII) is mediated by a hepatic receptor low-density lipoprotein receptor-related protein (LRP), a member of low-density lipoprotein receptor (LDLR) family. It has been recently discovered that LDLR acts in concert with LRP in regulating fVIII level. FVIII has the domain structure A1-A2-B-A3-C1-C2, and to identify the portions providing the interaction with LDLR, in surface plasmon resonance-based assay we studied the binding of fVIII and its fragments to immobilized recombinant ligand-binding domain of LDLR (residues 1-292). The affinity values were determined from the families of binding signals obtained for five concentrations (10–150 nM) of each analyte. The binding signals for full-length fVIII, and its portions A3-C1–C2 (or light chain, LCh) and A1/A3-C1–C2 heterodimer (derived from activated fVIII) were best fitted to a two-site model, with equilibrium dissociation constants KD(1) ~1, 4, 14 nM and KD(2) ~14, 45 and 37 nM, respectively. Noteworthy, we did not observe any significant binding for the isolated C2 domain (at 300 nM). This suggests that the LDLR-binding site within LCh is likely located within the A3 domain, similar to that found previously for LCh-LRP interaction. The binding signals for A1-A2-B (heavy chain, HCh) were best fitted to a one-site model, with KD ~60 nM. We registered a dose-dependent, high-affinity binding of the isolated A2 domain to LDLR, with KD ~14 nM whereas the A1 domain showed no appreciable binding. This suggests that within HCh, A2 domain bears the LDLR-binding site. Von Willebrand factor did not significantly block the binding of fVIII to LDLR as compared to a 3-fold inhibition of fVIII binding to LRP. This indicates that within fVIII/vWf complex, the A2 binding site for LDLR is more available than that for LRP. Anti-A2 monoclonal antibody 413 (epitope 484–509) inhibited the A2 binding to LDLR in a dose-dependent manner, similarly to that demonstrated for fVIII-LRP interaction. A number of A2 point mutants with substitutions of the residues critical for A2 binding to LRP, megalin and VLDL were found to have significantly reduced affinity also for LDLR. The obtained data indicate that fVIII interacts with LDLR preferentially via the binding sites located within the A2 domain of HCh and within the A3 domain of LCh, and that the A2 site is likely to be universal for the interactions with four tested members of LDL receptor family.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1014-1014
Author(s):  
Evgeny M. Makogonenko ◽  
Andrey G. Sarafanov ◽  
Natalya M. Ananyeva ◽  
Klaus-Peter Radtke ◽  
Dudley K. Strickland ◽  
...  

Abstract B domain of coagulation factor VIII (fVIII) was previously considered to be dispensable for fVIII function. Recently, it was found that the B domain is important for fVIII intracellular interaction with its chaperon and likely involved in fVIII clearance via asialoglycoprotein receptor. At the same time, the major clearance mechanism of fVIII involves initial interaction with heparan sulfate proteoglycans (HSPGs) followed by internalization via low-density lipoprotein receptor-related protein (LRP), member of low-density lipoprotein receptor (LDLR) family (Saenko et al, 1999; Sarafanov et al, 2001). It is possible that recently discovered clearance of fVIII via LDLR (Bovenschen et al, 2005) occurs in the same way. Since it was previously shown that fVIII binding sites for LRP are not located within B domain, we investigated if the latter regulates fVIII interaction with HSPGs. To explore this role of B domain, we compared the binding of plasma-derived fVIII (pd-fVIII) and recombinant B domain-deleted fVIII (BDD-fVIII) to immobilized LRP and heparin (a model of HSPGs) in surface plasmon resonance-based assay. The corresponding affinities were assessed by processing the binding signals obtained for five different concentrations of each analyte. Both pd-fVIII and BDD-fVIII showed similar affinities for LRP (KD 42–60 nM). The LRP-binding site of BDD-fVIII was partially blocked by pre-incubation with its carrier protein von Willebrand factor (vWf) indicating that it is only partially accessible within fVIII/vWf complex. This was further confirmed by the finding that monoclonal antibody 413, which recognizes a high-affinity LRP-binding site within the fVIII A2 domain, interacted with ~25% of BDD-fVIII molecules bound to immobilized vWf. The affinities of pd-fVIII and recombinant BDD-fVIII for immobilized heparin were similar (KD ~20 nM) and 2-fold higher than that for purified A2 domain (KD ~46 nM). Noteworthy, the maximal binding level (Rmax) proved to be 10-fold lower for pd-fVIII in comparison with BDD-fVIII indicating that in the circulation intact fVIII may have limited interaction with HSPGs. Importantly, pre-incubation with vWf did not interfere with the interaction between BDD-fVIII and heparin (KD ~ 19.5 and 21.8 nM, Rmax ~ 194 and 354 RU for BDD-fVIII and BDD-fVIII/vWf, respectively) thus revealing that heparin-binding site of fVIII is completely exposed in BDD-fVIII/vWf complex. These findings suggest that the presence of B domain in circulating fVIII/vWf complex may regulate fVIII clearance by preventing its interaction with HSPGs. The absence of B domain leads to exposure of heparin-binding site within fVIII and binding of fVIII/vWf complex to HSPGs. This binding may be a driving force in fVIII clearance which involves subsequent exposure of LRP (LDLR)-binding site(s) and internalization of fVIII from its complex with vWf via these receptors.


2004 ◽  
Vol 78 (13) ◽  
pp. 6766-6774 ◽  
Author(s):  
Barbara Herdy ◽  
Luc Snyers ◽  
Manuela Reithmayer ◽  
Peter Hinterdorfer ◽  
Dieter Blaas

ABSTRACT Human rhinovirus serotype 1A (HRV1A) binds more strongly to the mouse low-density lipoprotein receptor (LDLR) than to the human homologue (M. Reithmayer, A. Reischl, L. Snyers, and D. Blaas, J. Virol. 76:6957-6965, 2002). Here, we used this fact to determine the binding site of HRV1A by replacing selected ligand binding modules of the human receptor with the corresponding ligand binding modules of the mouse receptor. The chimeric proteins were expressed in mouse fibroblasts deficient in endogenous LDLR and LDLR-related protein, both used by minor group HRVs for cell entry. Binding was assessed by virus overlay blots, by immunofluorescence microscopy, and by measuring cell attachment of radiolabeled virus. Replacement of ligand binding repeat 5 of the human LDLR with the corresponding mouse sequence resulted in a substantial increase in HRV1A binding, whereas substitution of repeats 3 and 4 was without effect. Replacement of human receptor repeats 1 and 2 with the murine homologues also increased virus binding. Finally, murine receptor modules 1, 2, and 5 simultaneously introduced into the human receptor resulted in HRV1A binding indistinguishable from mouse wild-type receptor. Thus, repeats 1 and/or 2 and repeat 5 are involved in HRV1A attachment. Changing CDG GP D in the acidic cluster of module 5 in the human receptor to CDG EA D present in the mouse receptor led to substantially increased binding of HRV1A, indicating an important role of the glutamate residue in HRV1A recognition.


Sign in / Sign up

Export Citation Format

Share Document