Mutations in LMAN1 and MCFD2 May Account for All Cases of Combined Deficiency of Factor V and Factor VIII.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 724-724
Author(s):  
Bin Zhang ◽  
Beth McGee ◽  
William C. Nichols ◽  
Hugo Guglielmone ◽  
Katherine Downes ◽  
...  

Abstract Factor V (FV) and factor VIII (FVIII) are two large plasma glycoproteins that function as essential cofactors for the proteolytic activation of prothrombin and factor X, respectively. Efficient biosynthesis of FV and FVIII requires LMAN1 and MCFD2, two proteins localized to the early secretory pathway of the cell. LMAN1 is a 53-kD homo-hexameric transmembrane protein with homology to leguminous mannose-binding lectins. MCFD2 is an EF-hand domain protein that co-localizes with LMAN1 to the ER-Golgi intermediate compartment (ERGIC). MCFD2 interacts with LMAN1 to form a stable, calcium-dependent protein complex that functions as a cargo receptor, ferrying FV and FVIII from the endoplasmic reticulum to the Golgi. Mutations in LMAN1 or MCFD2 cause combined deficiency of factors V and VIII, an autosomal recessive disorder associated with plasma levels of FV and FVIII in the range of 5% to 30% of normal. However, three families were found to have no LMAN1 or MCFD2 mutations, with 2 of these families showing genetic evidence against linkage to either gene, raising the possibility of additional locus heterogeneity and the involvement of a third F5F8D gene. We now report the analysis of 10 previously reported and 9 new F5F8D families. We identified 3 MCFD2 mutations accounting for 6 F5F8D families, and 8 LMAN1 mutations accounting for 8 additional families, including the first-reported single amino acid substitution, replacement of cysteine at amino acid position 475 with arginine (C475R). Cysteine 475 was previously reported to be important in forming an intermolecular disulfide bond required for LMAN1 oligomerization. However, C475R LMAN1 was undetected by Western blot analysis in lymphoblasts derived from a patient hemizygous for this mutation, with only a trace of protein detectable by immunoprecipitation. Thus, the C475R mutation appears to result in an unstable LMAN1 protein that is rapidly degraded. Failure of proteasome inhibitors to increase the intracellular accumulation of this protein suggests an alternative degradation pathway. Finally, two LMAN1 alleles for which no mutations were identified were nonetheless shown to result in no detectable LMAN1 mRNA, indicating a cis-defect in transcription or mRNA stability. Taken together with our previous reports, we have now identified LMAN1 or MCFD2 mutations as the causes of F5F8D in 70 of 75 families. Two of the remaining 5 families are consistent with linkage to the LMAN1 or MCFD2 loci, suggesting mutations in the regulatory region of the genes that were missed by direct sequencing. Reanalysis of the remaining 3 families suggests an initial misdiagnosis, with one reclassified as isolated, mild FV deficiency, and two others as von Willebrand disease. These results suggest that mutations in LMAN1 and MCFD2 account for all cases of F5F8D, with no evidence for a 3rd F5F8D gene.

Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 563-567 ◽  
Author(s):  
S Jorieux ◽  
EA Tuley ◽  
C Gaucher ◽  
C Mazurier ◽  
JE Sadler

Abstract von Willebrand factor (vWF) and factor VIII (FVIII) circulate in plasma as a noncovalently linked protein complex. The FVIII/vWF interaction is required for the stabilization of procoagulant FVIII activity. Recently, we reported a new variant of von Willebrand disease (vWD) tentatively named “Normandy,” characterized by plasma vWF that appears to be structurally and functionally normal except that it does not bind FVIII. Three patients from one family were found to be homozygous for a C----T transition at codon 816 converting Arg 53 to Trp in the mature vWF subunit. To firmly establish a causal relationship between this missense mutation and vWD Normandy phenotype, we have characterized the corresponding recombinant mutant vWF(R53W). Expressed in COS-7 cells or CHO cell lines, normal vWF and vWF(R53W) were processed and formed multimers with equal efficiency. However, vWF(R53W) exhibited the same defect in FVIII binding as did plasma vWF from patients with vWD Normandy, confirming that this mutation is responsible for the vWD Normandy phenotype. These results illustrate the importance of Arg 53 of the mature vWF subunit for the binding of FVIII to vWF, and identify an amino acid residue within a disulfide loop not previously known to be involved in this interaction.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 513-513
Author(s):  
Kyoichi Ogata ◽  
Steven W. Pipe

Abstract Hemophilia A results from the quantitative or qualitative deficiency of coagulation factor VIII (FVIII). FVIII is synthesized as a single-chain polypeptide of approximately 280 kDa with the domain structure A1-A2-B-A3-C1-C2. Whereas the A and C domains exhibit ~40% amino acid identity to each other and to the A and C domains of coagulation factor V, the B domain is not homologous to any known protein and is dispensable for FVIII cofactor activity. Missense mutations in the FVIII B domain have been described in patients with variable phenotypes of hemophilia A. According to the NCBI SNPs (single nucleotide polymorphism) database, 22 SNPs are reported within FVIII, 11 of which occur within the B domain. FVIII B domain variant D1241E has been reported as a missense mutation associated with mild or severe hemophilia A, yet this mutation is also present in the NCBI SNPs database. We hypothesize that D1241E and most other reported B domain missense mutations are not the causative mutation for hemophilia A in these patients but represent SNPs or otherwise non-pathologic mutations. To investigate this, we analyzed 7 B domain missense mutations that were previously found in hemophilia A patients (T751S, V993L, H1047Y, D1241E, T1353A, P1641L and S1669L). Comparative analysis showed that the amino acids at these positions are not conserved in all species and in some cases, the amino acid substitution reported in hemophilia patients is represented in the native sequence in other species. Analysis with PolyPhen Software showed that only H1047Y mutation was considered as “possibly damaging”, while the others were considered as “benign”. To investigate this further, we constructed seven plasmid vectors containing these B domain missense mutations. The synthesis and secretion of FVIII wild-type (WT) and these seven mutants were compared after transient DNA transfection into COS-1 monkey cells in vitro. Analysis of the FVIII clotting activity and antigen levels in the conditioned medium demonstrated that all mutants had FVIII activity and antigen levels similar to FVIII WT. Further, FVIII WT, H1047Y and D1241E mutants were introduced into a FVIII exon 16 knock-out mouse model of hemophilia A by hydrodynamic tailvein injection in vivo. The mouse plasma was analyzed at 24 hrs for activity and antigen expression. Mutants H1047Y and D1241E expressed at 211 mU/mL and 224 mU/mL activity with FVIII antigen levels of 97 ng/mL and 118 ng/mL, respectively, similar to FVIII WT. These results suggested that H1047Y and D1241E mutants did not lead to impairments in secretion or functional activity. We conclude that most missense mutations within the FVIII B domain would be unlikely to lead to severe hemophilia A and that the majority of such missense mutations represent polymorphisms or non-pathologic mutations. Investigators should search for additional potentially causative mutations elsewhere within the FVIII gene when B domain missense mutations are identified.


1976 ◽  
Vol 32 (6) ◽  
pp. 415-422 ◽  
Author(s):  
Antonio Girolami ◽  
Nicola Violante ◽  
Giuseppe Cella ◽  
Giovanni Patrassi

1987 ◽  
Author(s):  
Richard J Jenny ◽  
Debra D Pittman ◽  
John J Toole ◽  
Ronald W Kriz ◽  
Randal J Kaufman ◽  
...  

cDNA clones encoding human factor V have been isolated and sequenced. The cDNA sequence of factor V obtained from overlapping clones includes a 6672 bp coding region, a 90 bp 5'-untranslated region and a 163 bp 3’-untranslated region including a poly-A tail. The deduced amino acid sequence consists of 2224 amino acids including a 28 amino acid leader peptide. A direct comparison to human factor VIII reveals considerable homology between both proteins with respect to amino acid sequence and domain structure. A triplicated "A" domain and duplicated "C" domain show an approximate 40% identity to the corresponding domains in factor VIII. Factor V and Factor VIII both possess a heavily glycosylated B domain that separates the heavy and light chains of the activated cofactors, although no significant homology is observed in this region. The B domain of factor V contains 35 tandem and approximately 9 additional semi - conserved repeats of nine amino acids of the form (D-L-S-Q-T-T-L-S-P) and 2 additional semi-conserved repeats of 17 amino acids. Factor V contains 37 potential N-linked glycosylation sites, 25 of which are in the B domain, and a total of 19 cysteine residues. By direct comparison to amino acid sequence obtained from both human and bovine factor V, the thrombin (IIa) cleavage sites have been assigned as Arg-709/Ser-710, Arg-1018/Thr-1019, and Are-1545/Ser-1546.(Supported by NIH Grant HL-34575)


Haemophilia ◽  
2009 ◽  
Vol 15 (3) ◽  
pp. 838-839 ◽  
Author(s):  
H. GUGLIELMONE ◽  
S. MINOLDO ◽  
G. JARCHUM

Blood ◽  
2008 ◽  
Vol 111 (12) ◽  
pp. 5592-5600 ◽  
Author(s):  
Bin Zhang ◽  
Marta Spreafico ◽  
Chunlei Zheng ◽  
Angela Yang ◽  
Petra Platzer ◽  
...  

AbstractCombined deficiency of factor V and factor VIII (F5F8D) is caused by mutations in one of 2 genes, either LMAN1 or MCFD2. Here we report the identification of mutations for 11 additional F5F8D families, including 4 novel mutations, 2 in MCFD2 and 2 in LMAN1. We show that a novel MCFD2 missense mutation identified here (D81Y) and 2 previously reported mutations (D89A and D122V) abolish MCFD2 binding to LMAN1. Measurement of platelet factor V (FV) levels in 7 F5F8D patients (4 with LMAN1 and 3 with MCFD2 mutations) demonstrated similar reductions to those observed for plasma FV. Combining the current data together with all previous published reports, we performed a genotype-phenotype analysis comparing patients with MCFD2 mutations with those with LMAN1 mutations. A previously unappreciated difference is observed between these 2 classes of patients in the distribution of plasma levels for FV and factor VIII (FVIII). Although there is considerable overlap, the mean levels of plasma FV and FVIII in patients with MCFD2 mutations are significantly lower than the corresponding levels in patients with LMAN1 mutations. No differences in distribution of factor levels are observed by sex. These data suggest that MCFD2 may play a primary role in the export of FV and FVIII from the ER, with the impact of LMAN1 mediated indirectly through its interaction with MCFD2.


Sign in / Sign up

Export Citation Format

Share Document