Constitutive JAK3 Activation as a Mouse Model for Human Peripheral T-Cell Lymphoma.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1612-1612
Author(s):  
Melanie G. Cornejo ◽  
Michael G. Kharas ◽  
Benjamin Lee ◽  
Sandra A. Moore ◽  
Gary Gilliland ◽  
...  

Abstract Molecular pathogenesis of human peripheral T-cell malignancies remains poorly understood. We aimed to establish a model for these disorders by using the recently identified JAK3A572V allele. This mutation, which lies in the pseudokinase (JH2) domain of JAK3, transforms Ba/F3 cells to factor-independent growth and causes a striking lymphoproliferative phenotype in a murine bone marrow transplantation assay. Further characterization of JAK3A572V animals revealed that the aberrantly expanded cell population consisted of a mature effector/memory subtype of CD8+T-cells that infiltrated all major lymphoid and several non-lympoid organs and could be transplanted into secondary and tertiary recipients. These JAK3A572V T-cells had increased proliferative capacities and displayed enhanced phosphorylation of common JAK3 targets, such as STAT5 and S6-kinase. Proliferation of primary T-cells transformed by JAK3A572V was effectively inhibited with a small molecule JAK inhibitor that had no effect on the proliferative potential of control cells transduced with a wildtype JAK3 allele. Furthermore, the mutant cells showed increased production of cytotoxic cytokines, such as IFN-γ and TNF-α, compared to wildtype counterparts, which correlated with an increased cellular cytotoxicity towards allogeneic target cells. Of particular interest, JAK3A572V animals presented with skin lesions and histopathologic analysis showed aberrant skin-homing T-cells tagging along the epidermal/dermal junctions. Mice receiving Rag1-deficient donor cells transduced with the JAK3A572V allele also developed a lethal lymphoproliferative disease characterized by the expansion of immature CD3−TCRβ−CD4+/−CD8+ cells, suggesting that the JAK3A572V-dependent lymphoproliferation does not require proper TCR rearrangement. Altogether these results indicate that in this murine model, constitutive activation of JAK3 results in peripheral/cutaneous T-cell lymphoma (PTCL) that closely resembles the human disease. These findings suggest the possibility that the molecular basis of human PTCL could include aberrant JAK3 signaling and might provide a useful platform for deciphering the molecular and cellular mechanisms and requirements for peripheral lymphoid disease development and progression. Furthermore, it provides an opportunity to investigate the therapeutic potential of selective JAK3 inhibitors for this subset of lymphoid disorders, whose treatment remains a challenge.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1392-1392 ◽  
Author(s):  
Sarah H Beachy ◽  
Masahiro Onozawa ◽  
Yang Jo Chung ◽  
Christopher Slape ◽  
Sven Bilke ◽  
...  

Abstract Abstract 1392 Lin-28 was first identified as a heterochronic gene in C. elegans and is expressed at high levels during early larval stages with dramatically decreased expression in subsequent developmental stages. Interestingly, recent work demonstrated that induced expression of LIN28 can reprogram human fibroblasts to acquire pluripotency (in combination with NANOG, OCT4 and SOX2), providing additional evidence for a positive correlation between LIN28 expression and maintenance of a more immature and stem cell-like developmental state. Lin28a and Lin28b, the mammalian homologues of lin-28, have been implicated in oncogenic transformation in a variety of tumor types, in part by their ability to promote the degradation of the let-7 family of microRNAs (miRs), which are known to target oncogenes such as Myc and Ras. We recently noted that Lin28b was markedly overexpressed in hematopoietic tissues of NUP98-HOXD13 (NHD13) transgenic mice that develop a myelodysplastic syndrome (MDS) that subsequently transforms to acute myeloid leukemia (AML) or pre-T lymphoblastic leukemia/lymphoma (pre-T LBL). In order to elucidate the contribution of Lin28b overexpression to the differentiation block and malignant phenotype observed in the NHD13 mice, we designed a Lin28b transgenic mouse by targeting the expression of the transgene to hematopoietic tissues with Vav regulatory elements. In this model, clinically healthy Lin28b mice exhibited aberrant thymic architecture and retention of thymocytes that was correlated with peripheral blood lymphopenia (a 2.6-fold decrease in circulating lymphocytes). The lymphopenia was principally due to decreased numbers of CD4+ and CD8+ cells, although there was a significant increase in the number of CD4 and CD8 effector memory T cells (CD44hiCD62Llo) compared with wild type mice. Additionally, deep sequencing of thymic miRs from clinically healthy transgenic mice revealed a 2–5-fold downregulation of let-7 family members, including let-7d, g, f, i and miR-98. Importantly, with age, the Lin28b mice developed an aggressive, lethal, peripheral T cell lymphoma (PTCL), characterized by widespread infiltration of parenchymal organs with a mixed infiltrate of inflammatory cells and malignant CD4+ T cells. Clonal Tcrb gene rearrangements were observed in the lymphomas and the malignant cells engrafted and formed tumors in immunodeficient Scid mice. The Lin28b transgenic mice also had clinical signs consistent with a chronic inflammatory condition, such as eosinophilia, anemia, pleural effusions and ascites. The lymphomas overexpressed Il6 and Myc, and activated Nfκb, demonstrating in vivo involvement of a previously reported pathway that links Lin28b expression with inflammation and malignant transformation. Analysis of a publically available dataset indicated that Lin28b was overexpressed by 8-fold in a set of PTCL patient samples compared with activated CD4+ cells. Taken together, these findings demonstrate in vivo evidence for an oncogenic function of Lin28b and provide a model for further study of both the biology and identification of new therapeutic targets for PTCL, a heterogenous disease with poor prognosis. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enrique Huanosta-Murillo ◽  
Marcela Alcántara-Hernández ◽  
Brenda Hernández-Rico ◽  
Georgina Victoria-Acosta ◽  
Patricia Miranda-Cruz ◽  
...  

In cutaneous T cell lymphoma (CTCL), a dominant Th2 profile associated with disease progression has been proposed. Moreover, although the production and regulation of IL-4 expression during the early stages of the disease may have important implications in later stages, these processes are poorly understood. Here, we demonstrate the presence of TOX+ CD4+ T cells that produce IL-4+ in early-stage skin lesions of CTCL patients and reveal a complex mechanism by which the NLRP3 receptor promotes a Th2 response by controlling IL-4 production. Unassembled NLRP3 is able to translocate to the nucleus of malignant CD4+ T cells, where it binds to the human il-4 promoter. Accordingly, IL-4 expression is decreased by knocking down and increased by promoting the nuclear localization of NLRP3. We describe a positive feedback loop in which IL-4 inhibits NLRP3 inflammasome assembly, thereby further increasing its production. IL-4 induced a potentially malignant phenotype measured based on TOX expression and proliferation. This mechanism of IL-4 regulation mediated by NLRP3 is amplified in late-stage CTCL associated with disease progression. These results indicate that NLRP3 might be a key regulator of IL-4 expression in TOX+ CD4+ T cells of CTCL patients and that this mechanism might have important implications in the progression of the disease.


2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S81-S81
Author(s):  
J Lanceta ◽  
W Xue ◽  
M Hurford ◽  
H Wu

Abstract Casestudy Epstein-Barr virus (EBV)-associated peripheral T-cell lymphomas are a group of aggressive neoplasms with a geographic predilection for South America and Asia, but are very rare in Western populations. Results We report a case of a 74-year-old Caucasian female who presented with pancytopenia and B symptoms with EBV-IgG detected on admission. Past medical history included: ITP, chronic urticaria, and recently diagnosed myelodysplastic syndrome (MDS) on bone marrow biopsy one month prior to admission. Excisional biopsies of an enlarged right neck lymph node (repeated within 6 months) and right axillary lymph node five years ago were negative for a lymphoproliferative disorder at the time. Repeated bone marrow biopsy, performed during the current admission, confirmed the diagnosis of MDS, with scattered T-cells without aberrant immunophenotype. Despite aggressive treatment from multiple specialties, the patient deteriorated and expired four weeks later from complications of MDS. At autopsy, there was diffuse lymphadenopathy involving the mediastinum, axilla, pelvis and peripancreatic fat. Lymph node sections demonstrated nodal architecture effacement by diffuse, vaguely nodular lymphoid infiltrates. Histologically, the infiltrates were composed of medium to large lymphocytes with round to slight irregular nuclei, rare Reed-Sternberg-like multinucleated cells, clumped chromatin, and indistinct nucleoli. Individual cell necrosis was abundant with mitotic figures readily identifiable. Immunohistochemistry revealed CD2+ CD3+ neoplastic T-cells that co-express MUM1 and a subset of CD30, while negative for CD4, CD5, CD8, CD56, ALK1, and TDT. EBV-encoded RNA in-situ hybridization was focally positive. The final postmortem diagnosis was peripheral T-cell lymphoma, not otherwise specified (NOS), with focal EBV positivity. Conclusion Co-existence of a de-novo MDS and non-Hodgkin lymphoma without any prior chemotherapeutic exposure is a highly unusual finding, although MDS-like presentations can occur with EBV-associated lymphomas. Peripheral T-cell lymphoma, NOS is an aggressive lymphoma and EBV positivity has been found correlated with a poor prognosis. This case demonstrates how postmortem examination remains an important tool in clinical- pathological correlation and highlights the potential pathogenetic role EBV plays in MDS and T-cell lymphoma.


Blood ◽  
2003 ◽  
Vol 102 (6) ◽  
pp. 2213-2219 ◽  
Author(s):  
Marcel W. Bekkenk ◽  
Maarten H. Vermeer ◽  
Patty M. Jansen ◽  
Ariënne M. W. van Marion ◽  
Marijke R. Canninga-van Dijk ◽  
...  

Abstract In the present study the clinicopathologic and immunophenotypic features of 82 patients with a CD30– peripheral T-cell lymphoma, unspecified, presenting in the skin were evaluated. The purpose of this study was to find out whether subdivision of these lymphomas on the basis of cell size, phenotype, or presentation with only skin lesions is clinically relevant. The study group included 46 primary cutaneous CD30– large cell lymphomas and 17 small/medium-sized T-cell lymphomas as well as 17 peripheral T-cell lymphomas with both skin and extracutaneous disease at the time of diagnosis. Patients with primary cutaneous small- or medium-sized T-cell lymphomas had a significantly better prognosis (5-year-overall survival, 45%) than patients with primary cutaneous CD30– large T-cell lymphomas (12%) and patients presenting with concurrent extracutaneous disease (12%). The favorable prognosis in this group with primary cutaneous small- or medium-sized T-cell lymphomas was particularly found in patients presenting with localized skin lesions expressing a CD3+CD4+CD8– phenotype. In the primary cutaneous T-cell lymphoma (CTCL) group and in the concurrent group, neither extent of skin lesions nor phenotype had any effect on survival. Our results indicate that peripheral T-cell lymphomas, unspecified, presenting in the skin have an unfavorable prognosis, irrespective of the presence or absence of extracutaneous disease at the time of diagnosis, cell size, and expression of a CD4+ or CD8+ phenotype. The only exception was a group of primary cutaneous small- or medium-sized pleomorphic CTCLs with a CD3+CD4+CD8– phenotype and presenting with localized skin lesions.


2018 ◽  
Vol 11 (1) ◽  
pp. 212-215 ◽  
Author(s):  
Yota Sato ◽  
Taku Fujimura ◽  
Yumi Kambayashi ◽  
Akira Hashimoto ◽  
Setsuya Aiba

Bexarotene is a third-generation retinoid X receptor-selective retinoid that is widely used for the early treatment of advanced-stage cutaneous T-cell lymphomas. In this report, we describe a case of successful treatment of advanced primary cutaneous peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) with oral bexarotene monotherapy. After the administration of oral bexarotene at a dose of 300 mg/m2/day, all skin lesions and lymph nodes regressed, and complete remission was achieved for 1 year. Our case suggested that bexarotene monotherapy could be one of the possible therapies for the treatment of primary cutaneous PTCL-NOS.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2767-2767
Author(s):  
Waseem Lone ◽  
Alyssa Bouska ◽  
Tyler Herek ◽  
Catalina Amador ◽  
Mallick Saumyaranajn ◽  
...  

Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas and approximately 30% of PTCLs are designated as not-otherwise specified (PTCL-NOS). Gene expression profiling (GEP) identified molecular classifiers for PTCL entities and identified 2 novel biological subgroups within PTCL-NOS (PTCL-GATA3 and PTCL-TBX21), associated with T-cell differentiation subsets. To further investigate molecular oncogenesis, we performed microRNA expression profiling (miR-EP) in several molecular subtypes of PTCL including angioimmunoblastic T-cell lymphoma (AITL), PTCL-GATA3 and PTCL-TBX21 using formalin fixed paraffin embedded tissues. We also performed miR-EP of normal T-cell subsets polarized to represent different differentiation stages (TFH, TH1 and TH2). We performed miR-EP on 102 PTCL cases using either quantitative real time PCR (ABI, Biosystem) or ultra-sensitive direct miRNA counting (nCounter, NanoString). Corresponding GEP (mRNA) were available for 67 PTCL cases. Normal T-cells were polarized in-vitro with different cytokine milieu and examined by flow cytometry. We observed distinct miRNA profiles, with miRNA being uniquely expressed in TFH polarized cells (miR-26a-5p, miR-17-5p, miR-30d-5p, miR-22-3p, miR-222-3p, miR-142-3p, let-7i-5p and miR-29b-3p). In contrast, the TH1 lineage was enriched for expression of miR-155-5p, miR-146a-5p, miR-1246, miR-93-5p, miR-16-5p, miR-21-5p, miR-363-3p, miR-1260a, miR-186-5p, miR-148a-3p and miR-579-3p, whereas TH2 polarized cells expressed miR-181a-5p, let-7a-5p, miR-191-5p, miR-15b-5p, let-7d-5p, let-7b-5p, miR-140-5p, miR-98-5p, miR-423-5p and miR-630. Several of these miRNA expressed in the T-cells subsets showed corresponding expression in their respective PTCL entity such as miR-142-3p, let7i-5p, miR-21-5p and miR-29b-3p with AITL, miR-146-5p, miR-155-5p and miR-16-5p in PTCL-TBX21 and miR-181a-5p, miR-630 and let7a-5p in PTCL-GATA3. We also performed the MiRNA Enrichment Analysis and Annotation (miEAA) for miRNA signatures and observed an enrichment of miRNA regulating epigenetic modifications in TFH cells (p=0.028), whereas TH1 showed an enrichment of miRNA regulating IFN-g signaling (p=0.0024), and miRNA signatures in TH2 showed negative regulation of TGF-b signaling (p=0.023). Supervised analysis (p=0.05) of the miRNA profiles identified significant association of miR-126, miR-145, and let-7c-5p with AITL, when compared to other PTCLs. Similarly, miR-92a, miR-25, miR-636, miR-210, miR-222 and miR-491-5p significantly associated with PTCL-GATA3 and miRNA 126-3p, 145-5p, miR-26a-5p and miR-34a-5p associated with PTCL-TBX21. The miEAA for tumor miRNA signatures revealed enrichment of miRNAs regulating histone methylation (h3 k4 methylation) and chemokine receptor signaling in AITL, whereas miRNA regulating T-cell receptor were enriched in PTCL-TBX21 and TP53 signaling pathway in PTCL-GATA3. We validated the expression of miR-126 in AITL by qRT-PCR and also observed its increased expression in IL21 stimulated CD4+ T-cells. Ectopic expression of miR-126 resulted in a ~3 fold increased expression in T-cell lines and led to reduced proliferation and increased apoptosis with expression of T-cell exhaustion makers PD1 and TIM3. Computational algorithmic programs identified relevant biological targets of miR-126, including p85/PIK3R2, S1PR2 and DNMT3A that were further validated in-vitro. We observed an inverse correlation of miR-126 expression with S1PR2 expression (r=-0.64). S1PR2 is a crucial G protein-coupled receptor regulating B and T-cell migration in the germinal center (GC) reaction. Migration assays demonstrated significant decreases in T to B-cell migration, when B-cells (Raji) were co-cultured with Jurkat cells with ectopic expression of miR-126. With the GC reaction holding an important role in AITL, we investigated the biological significance of miRNA-126 in the context of the AITL microenvironment. High expression of miRNA-126 significantly associated with inferior survival in AITL (p=0.008) and significant differences in tumor microenvironment signatures. We identified distinct miRNA signatures for AITL and molecular subgroups of PTCL-NOS. Furthermore, elevated expression of miR-126 may contribute to the dysregulation and the homing of TFH cells in GC reaction through S1PR2 and warrants further mechanistic investigation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document