VWF Concentrates - Does Size Really Matter - Von Willebrand Factor Function under Physiological Flow Conditions.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3138-3138
Author(s):  
Bruce A. Schwartz ◽  
Birte Fuchs ◽  
C. Fisseau ◽  
Craig M. Kessler ◽  
Christoph Kannicht

Abstract Introduction: The Von Willebrand Factor (VWF), is a very large glycoprotein present in human plasma essential for normal thrombus formation at sites of vascular injury. Blood coagulation is initiated by exposure of vessel wall components, e.g. collagen, followed by platelet tethering, activation and adhesion leading to the formation of a stable clot. All steps of blood coagulation occur in flowing blood under various conditions depending on vessel size. It is important to assess the function of a VWF concentrate under physiologic conditions. Under static or low shear conditions, platelets can bind directly to collagen without assistance of VWF, while the VWF is essential for mediation of platelet adhesion under high flow occurring in the arterial circulation. It has been assumed that multimer size plays an important role in this binding and in subsequent platelet adhesion. In this study we evaluated the binding of VWF of different multimeric structures to collagen and determined VWF-mediated platelet binding under low to high shear rates in a flow chamber model. Methods: A flow-chamber coated with human collagen was developed to mimic physiological flow conditions. A high purity VWF/factor VIII (FVIII) concentrate (Wilate®) and two other VWF/FVIII concentrates were tested at shear rates of 400 1700 and 4000 s−1 reproducing shear rates occurring in veins, small arteries and capillaries. Collagen-bound VWF was characterized by antigen determination (VWF:Ag) and multimer (MM) analysis. Binding of labeled platelets was visualized by a fluorescence microscope and surface coverage was quantified. Results: All VWF MMs independent of MM size were found to bind to collagen even under high shear rates. The amount of collagen-bound VWF:Ag and VWF-mediated platelet adhesion at 1700 s−1 differed significantly between the tested concentrates, when equal VWF:Ag amounts were applied. Conclusion: Binding of VWF to collagen does not depend on VWF MM size in this model even when measured under high shear rates. The differences in collagen-bound VWF:Ag and VWF-mediated platelet binding do not seem to depend on the VWF MM distribution of the concentrates. Other structural features than VWF MM size may likely be caused by the differences seen in the binding levels of the different concentrates and should be further explored. Possible differences between VWF activity assays performed under static or flow conditions and their appropriate use for VWD diagnosis and quantification of in-vivo activity need to be further investigated.

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.


1996 ◽  
Vol 81 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Harvey R. Gralnicks ◽  
Wendy S. Kramer ◽  
Laurie P. McKeown ◽  
Leonard Garfinkel ◽  
Amos Pinot ◽  
...  

Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 705-711 ◽  
Author(s):  
J Harsfalvi ◽  
JM Stassen ◽  
MF Hoylaerts ◽  
E Van Houtte ◽  
RT Sawyer ◽  
...  

Calin from the saliva of the medicinal leech, Hirudo medicinalis, is a potent inhibitor of collagen mediated platelet adhesion and activation. In addition to inhibition of the direct platelet-collagen interaction, we presently demonstrate that binding of von Willebrand to coated collagen can be prevented by Calin, both under static and flow conditions in agreement with the occurrence of binding of Calin to collagen, confirmed by Biospecific Interaction Analysis. To define whether Calin acted by inhibiting the platelet-collagen or the platelet- von Willebrand factor (vWF)-collagen-mediated thrombus formation, platelet adhesion to different types of collagens was studied in a parallel-plate flow chamber perfused with whole blood at different shear rates. Calin dose-dependently prevented platelet adhesion to the different collagens tested both at high- and low-shear stress. The concentration of Calin needed to cause 50% inhibition of platelet adhesion at high-shear stress was some fivefold lower than that needed for inhibition of vWF-binding under similar conditions, implying that at high-shear stress, the effect of Calin on the direct platelet- collagen interactions, suffices to prevent thrombus formation. Platelet adhesion to extracellular matrix (ECM) of cultured human umbilical vein endothelial cells was only partially prevented by Calin, and even less so at a high-shear rather than a low-shear rate, whereas the platelet binding to coated vWF and fibrinogen were minimally affected at both shear rates. Thus, Calin interferes with both the direct platelet- collagen interaction and the vWF-collagen binding. Both effects may contribute to the inhibition of platelet adhesion in flowing conditions, although the former seems to predominate.


1987 ◽  
Author(s):  
A Ordinas ◽  
E Bastida ◽  
M Garrido ◽  
J Monteagudo ◽  
L de Marco ◽  
...  

Native Von Willebrand factor (NvWF) binds to platelets activated by thrombin, ADP or ristocetin, and also supports the adhesion of platelets to subendothelium at high shear rates. In contrast, asialo von Willebrand factor (AvWF) induces platelet aggregation in absence of platelet activators. We investigated the role of AvWF in supporting the adhesion of platelets to rabbit vessel subendothelium under flow conditions at a shear rate of 2000 sec-1 for 5 min using the Baumgartner perfusion system. We also studied the effects of blockage of platelet GPIb or GPIIb/IIIa on platelet adhesion using monoclonal antibodies (Mabs),and we measured the rate of binding of 111I-labeled NvWF and AvWF to subendothelium. Perfusates consisted of washed platelts and red cells resuspended in a 4% human albumin solution to which increasing concentrations of NvWF or AvWF had been added. Platelets interacting with the perfused vessels were evaluated morphometrically using a computerized system. At a concentration of 1.2 /ig/ml the percentage of total coverage surface was 21.3 ± 4.8% and 40.0±14.6%, for NvWF and AvWF, respectively (p<0.01). Addition of either Mab against GPIb (LJlbl) or against GPIIb/IIIa (CP8) to the perfusates, reduced platelet deposition (p <0.01). The rates of binding of 111I-labeled NvWF and AvWF to perfused vessel subendothelium were similar (0.83±0.1μg and 0.95±0.1 μg ,respectively).Our results indicate that AvWF enhances the interaction of washed platelets with the vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is related to the interaction of AvWF with platelets and not to an increased affinity of AvWF for subendothelium.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217 ◽  
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Abstract Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4025-4025
Author(s):  
Miguel A. Cruz ◽  
Katie E. Sowa ◽  
Scott M. Smith

Abstract Abstract 4025 Poster Board III-961 Recently, we described that the gain of function mutation R1450E in the A1 domain of von Willebrand factor (VWF) eliminates the formation of catch bond with glycoprotein (GP)Ibα, prolonging the bond lifetimes at low forces. Because those studies were performed with the mutant immobilized on a plastic surface, we further characterize the effect of this mutant on platelet function in solution and under shear stress. Both wild type (WT) and mutant A1A2A3 proteins were expressed in HEK293 cells and purified to homogeneity. The monomeric state of A1A2A3 proteins were assessed by gel filtration chromatography and neither of the proteins had formed dimers or any higher order aggregates. The recombinant A1A2A3 mutant bound spontaneously to GPIbα without the modulator ristocetin with a half-maximal binding observed at 65 ± 8 nM. This apparent dissociation constant was comparable to that of WT (50 ± 10 nM) in the presence of ristocetin. The mutant failed to induce spontaneous platelet aggregation under stirring conditions, and blocked 100% ristocetin-induced platelet agglutination (RIPA) at concentration of 250 nM. At the same concentration, the mutant increased shear-induced platelet aggregation (SIPA) at 500s-1 and 5000s-1 shear rates, reaching 42% and 66%, respectively, while SIPA did not exceed 18% in the presence of WT. The anti-αIIbβ3 antibody 7E3 blocked the effect of the mutant on SIPA. Blood was then incubated with the mutant (250 nM) and perfused over a surface coated with fibrin(ogen) at different shear rates. Blood containing WT resulted in <10% surface coverage by platelets after 1.5 minutes while platelets from blood containing the mutant rapidly bound covering 100% of the fibrin(ogen) surface area at 1500s-1. At shear rate of 2500s-1, surface coverage was 20% for the mutant and 0% for WT fragment. EDTA and antibodies 6D1 (GPIbα) and 10E5 (αIIbβ3) effectively blocked mutant-mediated platelet adhesion and thrombus formation under high shear rates. The addition of ristocetin (0.5 mg/ml) to whole blood prior perfusion reproduced the effect of the mutant. Here, we describe an A1A2A3 mutant that bound spontaneously to GPIbα but affected differently RIPA and SIPA. These results suggest that hydrodynamic forces directly act on the GPIbα-mutant A1A2A3 complex, regulating signaling. In addition, platelet activation induced by the binding of soluble mutant A1A2A3 or plasma VWF results in αIIbβ3-mediated platelet adhesion to fibrin(ogen) under high shear rates. Disclosures: No relevant conflicts of interest to declare.


1988 ◽  
Vol 60 (01) ◽  
pp. 030-034 ◽  
Author(s):  
Eva Bastida ◽  
Juan Monteagudo ◽  
Antonio Ordinas ◽  
Luigi De Marco ◽  
Ricardo Castillo

SummaryNative von Willebrand factor (N-vWF) binds to platelets activated by thrombin, ADP or ristocetin. Asialo vWF (As-vWF) induces platelet aggregation in absence of platelet activators. N-vWF mediates platelet adhesion to vessel subendothelium at high shear rates. We have investigated the role of As-vWF in supporting platelet deposition to rabbit vessel subendothelium at a shear rate of 2,000 sec-1, using the Baumgartner perfusion system. We have studied the effects of the addition of As-vWF (from 2 to 12 μg/ml) to perfusates consisting of washed red blood cells, 4% human albumin and washed platelets. Our results show a significant increase in platelet deposition on subendothelium (p <0.01) in perfusions to which As-vWF had been added. Blockage of the platelet glycoproteins Ib and IIb/IIIa (GPIb and GPIIb/IIIa) by specific monoclonal antibodies (LJIb1 and LJCP8, respectively) resulted in a decrease of platelet deposition in both types of perfusates prepared with N-vWF and As-vWF. Our results indicate that As-vWF enhances platelet deposition to vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is mediated by the binding of As-vWF to platelet membrane receptors, which in turn, promote platelet spreading and adhesion to the subendothelium.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3796-3803 ◽  
Author(s):  
Nadine Ajzenberg ◽  
Anne-Sophie Ribba ◽  
Ghassem Rastegar-Lari ◽  
Dominique Meyer ◽  
Dominique Baruch

Abstract The aim was to better understand the function of von Willebrand factor (vWF) A1 domain in shear-induced platelet aggregation (SIPA), at low (200) and high shear rate (4000 seconds-1) generated by a Couette viscometer. We report on 9 fully multimerized recombinant vWFs (rvWFs) expressing type 2M or type 2B von Willebrand disease (vWD) mutations, characterized respectively by a decreased or increased binding of vWF to GPIb in the presence of ristocetin. We expressed 4 type 2M (-G561A, -E596K, -R611H, and -I662F) and 5 type 2B (rvWF-M540MM, -V551F, -V553M, -R578Q, and -L697V). SIPA was strongly impaired in all type 2M rvWFs at 200 and 4000 seconds-1. Decreased aggregation was correlated with ristocetin binding to platelets. In contrast, a distinct effect of botrocetin was observed, since type 2M rvWFs (-G561A, -E596K, and -I662F) were able to bind to platelets to the same extent as wild type rvWF (rvWF-WT). Interestingly, SIPA at 200 and 4000 seconds-1 confirmed the gain-of-function phenotype of the 5 type 2B rvWFs. Our data indicated a consistent increase of SIPA at both low and high shear rates, reaching 95% of total platelets, whereas SIPA did not exceed 40% in the presence of rvWF-WT. Aggregation was completely inhibited by monoclonal antibody 6D1 directed to GPIb, underlining the importance of vWF-GPIb interaction in type 2B rvWF. Impaired SIPA of type 2M rvWF could account for the hemorrhagic syndrome observed in type 2M vWD. Increased SIPA of type 2B rvWF could be responsible for unstable aggregates and explain the fluctuant thrombocytopenia of type 2B vWD.


Blood ◽  
1990 ◽  
Vol 76 (7) ◽  
pp. 1336-1340 ◽  
Author(s):  
G Escolar ◽  
A Cases ◽  
E Bastida ◽  
M Garrido ◽  
J Lopez ◽  
...  

Abstract Uremic patients have an impaired platelet function that has been related to membrane glycoprotein (GP) abnormalities. Using a perfusion system, we have studied the interaction of normal and uremic platelets with vessel subendothelium (SE) under flow conditions. Reconstituted blood containing washed platelets, purified von Willebrand factor (vWF) (1 U/mL), and normal washed red blood cells was exposed to de- endothelialized rabbit segments for 10 minutes at two different shear rates (800 and 1,600 seconds-1). In some experiments a monoclonal antibody to the GPIIb-IIIa complex (EDU3) was added to the perfusates. With normal platelets, the percentage of the vessel covered by platelets (%CS) was 23.1% +/- 3.7% at 800 seconds-1 and 30% +/- 4.3% at 1,600 seconds-1. Platelets were observed in contact or forming monolayers on vessel SE. EDU3 inhibited the spreading of normal platelets. The %CS (11.1% +/- 3.3%) was statistically decreased (P less than .01) and most of the platelets were observed in contact with the vessel surface. These data indicate that, under flow conditions, the interaction of vWF with GPIIb-IIIa can support the spreading of normal platelets in the absence of exogenous fibrinogen. Under the same experimental conditions, the interaction of uremic platelets with SE was markedly impaired at both shear rates studied (P less than .01 v normal platelets). The presence of EDU3 did not modify the interaction of uremic platelets. These results confirm the impairment of the platelet adhesion observed in uremic patients. Furthermore, they indicate the presence of a functional defect in the interaction of vWF with GPIIb-IIIa. The fact that perfusions with normal and uremic platelets in the presence of an antibody to the GPIIb-IIIa complex did not show any differences gives indirect evidence on a functionally normal interaction vWF/GPIb in uremic patients.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3356-3356
Author(s):  
Bruce A. Schwartz ◽  
Christoph Kannicht ◽  
Birte Fuchs ◽  
Mario Kröning ◽  
Barbera Solecka

Abstract Abstract 3356 Objective: Multimeric glycoprotein von Willebrand factor (VWF) exhibits a unique triplet structure of individual oligomers, resulting from ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs 13) cleavage. The faster and slower migrating triplet bands of a given VWF multimer respectively have one shorter or longer N-terminal peptide sequence. Within this peptide sequence, the A1 domain regulates interaction of VWF with platelet glycoprotein (GP)Ib. Distribution of VWF triplet bands is significantly altered in some types of VWD, however, the impact of triplet structure on VWF function has not been investigated so far. Methods: Platelet-adhesive properties of two VWF preparations with similar multimeric distribution but different triplet composition obtained by size exclusion in addition to heparin affinity chromatography were investigated for differential functional activities. Preparation A was enriched in intermediate triplet bands, while preparation B predominantly contained larger triplet bands. Collagen- and GPIb-binding was determined by surface plasmon resonance (SPR). Platelet adhesion under flow was determined using flow-chamber models. Results: Binding studies revealed that preparation A displayed a reduced affinity for recombinant GPIb, but an unchanged affinity for collagen type III, when compared to preparation B. Under high-shear flow conditions, preparation A was less active in recruiting platelets to collagen type III. Furthermore, when added to blood from patients with von Willebrand disease (VWD), defective thrombus formation was less restored. Conclusion: Thus, VWF forms lacking larger size triplet bands appear to have a decreased potential to recruit platelets to collagen-bound VWF under arterial flow conditions. By implication, changes in triplet band distribution observed in patients with VWD may result in altered platelet adhesion at high-shear flow. Disclosures: Schwartz: Octapharma: Employment. Kannicht:Octapharma: Employment. Fuchs:octapharma: Employment. Kröning:octapharma: Employment. Solecka:Octapharma: Employment.


Sign in / Sign up

Export Citation Format

Share Document