scholarly journals Platelet von Willebrand factor: evidence for its involvement in platelet adhesion to collagen

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217 ◽  
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Abstract Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3796-3803 ◽  
Author(s):  
Nadine Ajzenberg ◽  
Anne-Sophie Ribba ◽  
Ghassem Rastegar-Lari ◽  
Dominique Meyer ◽  
Dominique Baruch

Abstract The aim was to better understand the function of von Willebrand factor (vWF) A1 domain in shear-induced platelet aggregation (SIPA), at low (200) and high shear rate (4000 seconds-1) generated by a Couette viscometer. We report on 9 fully multimerized recombinant vWFs (rvWFs) expressing type 2M or type 2B von Willebrand disease (vWD) mutations, characterized respectively by a decreased or increased binding of vWF to GPIb in the presence of ristocetin. We expressed 4 type 2M (-G561A, -E596K, -R611H, and -I662F) and 5 type 2B (rvWF-M540MM, -V551F, -V553M, -R578Q, and -L697V). SIPA was strongly impaired in all type 2M rvWFs at 200 and 4000 seconds-1. Decreased aggregation was correlated with ristocetin binding to platelets. In contrast, a distinct effect of botrocetin was observed, since type 2M rvWFs (-G561A, -E596K, and -I662F) were able to bind to platelets to the same extent as wild type rvWF (rvWF-WT). Interestingly, SIPA at 200 and 4000 seconds-1 confirmed the gain-of-function phenotype of the 5 type 2B rvWFs. Our data indicated a consistent increase of SIPA at both low and high shear rates, reaching 95% of total platelets, whereas SIPA did not exceed 40% in the presence of rvWF-WT. Aggregation was completely inhibited by monoclonal antibody 6D1 directed to GPIb, underlining the importance of vWF-GPIb interaction in type 2B rvWF. Impaired SIPA of type 2M rvWF could account for the hemorrhagic syndrome observed in type 2M vWD. Increased SIPA of type 2B rvWF could be responsible for unstable aggregates and explain the fluctuant thrombocytopenia of type 2B vWD.


Blood ◽  
1995 ◽  
Vol 86 (11) ◽  
pp. 4158-4165 ◽  
Author(s):  
SC Endenburg ◽  
RR Hantgan ◽  
L Lindeboom-Blokzijl ◽  
H Lankhof ◽  
WG Jerome ◽  
...  

Platelet adhesion to fibrin at high shear rates depends on both the glycoprotein (GP) IIb:IIIa complex and a secondary interaction between GPIb and von Willebrand factor (vWF). This alternative link between platelets and vWF in promoting platelet adhesion to fibrin has been examined in flowing whole blood with a rectangular perfusion chamber. Optimal adhesion required both platelets and vWF, as shown by the following observations. No binding of vWF could be detected when plasma was perfused over a fibrin surface or when coated fibrinogen was incubated with control plasma in an enzyme-linked immunosorbent assay. However, when platelets were present during perfusion, interactions between vWF and fibrin could be visualized with immunoelectron microscopy. Exposure of fibrin surfaces to normal plasma before perfusion with severe von Willebrand's disease blood did not compensate for the presence of plasma vWF necessary for adhesion. vWF mutants in which the GPIIb:IIIa binding site was mutated or the GPIb binding site was deleted showed that vWF only interacts with GPIb on platelets in supporting adhesion to fibrin and not with GPIIb:IIIa. Complementary results were obtained with specific monoclonal antibodies against vWF. Thus, vWF must first bind to platelets before it can interact with fibrin and promote platelet adhesion. Furthermore, only GPIb, but not GPIIb:IIIa is directly involved in this interaction of vWF with platelets.


1996 ◽  
Vol 81 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Harvey R. Gralnicks ◽  
Wendy S. Kramer ◽  
Laurie P. McKeown ◽  
Leonard Garfinkel ◽  
Amos Pinot ◽  
...  

1987 ◽  
Author(s):  
A Ordinas ◽  
E Bastida ◽  
M Garrido ◽  
J Monteagudo ◽  
L de Marco ◽  
...  

Native Von Willebrand factor (NvWF) binds to platelets activated by thrombin, ADP or ristocetin, and also supports the adhesion of platelets to subendothelium at high shear rates. In contrast, asialo von Willebrand factor (AvWF) induces platelet aggregation in absence of platelet activators. We investigated the role of AvWF in supporting the adhesion of platelets to rabbit vessel subendothelium under flow conditions at a shear rate of 2000 sec-1 for 5 min using the Baumgartner perfusion system. We also studied the effects of blockage of platelet GPIb or GPIIb/IIIa on platelet adhesion using monoclonal antibodies (Mabs),and we measured the rate of binding of 111I-labeled NvWF and AvWF to subendothelium. Perfusates consisted of washed platelts and red cells resuspended in a 4% human albumin solution to which increasing concentrations of NvWF or AvWF had been added. Platelets interacting with the perfused vessels were evaluated morphometrically using a computerized system. At a concentration of 1.2 /ig/ml the percentage of total coverage surface was 21.3 ± 4.8% and 40.0±14.6%, for NvWF and AvWF, respectively (p<0.01). Addition of either Mab against GPIb (LJlbl) or against GPIIb/IIIa (CP8) to the perfusates, reduced platelet deposition (p <0.01). The rates of binding of 111I-labeled NvWF and AvWF to perfused vessel subendothelium were similar (0.83±0.1μg and 0.95±0.1 μg ,respectively).Our results indicate that AvWF enhances the interaction of washed platelets with the vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is related to the interaction of AvWF with platelets and not to an increased affinity of AvWF for subendothelium.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4025-4025
Author(s):  
Miguel A. Cruz ◽  
Katie E. Sowa ◽  
Scott M. Smith

Abstract Abstract 4025 Poster Board III-961 Recently, we described that the gain of function mutation R1450E in the A1 domain of von Willebrand factor (VWF) eliminates the formation of catch bond with glycoprotein (GP)Ibα, prolonging the bond lifetimes at low forces. Because those studies were performed with the mutant immobilized on a plastic surface, we further characterize the effect of this mutant on platelet function in solution and under shear stress. Both wild type (WT) and mutant A1A2A3 proteins were expressed in HEK293 cells and purified to homogeneity. The monomeric state of A1A2A3 proteins were assessed by gel filtration chromatography and neither of the proteins had formed dimers or any higher order aggregates. The recombinant A1A2A3 mutant bound spontaneously to GPIbα without the modulator ristocetin with a half-maximal binding observed at 65 ± 8 nM. This apparent dissociation constant was comparable to that of WT (50 ± 10 nM) in the presence of ristocetin. The mutant failed to induce spontaneous platelet aggregation under stirring conditions, and blocked 100% ristocetin-induced platelet agglutination (RIPA) at concentration of 250 nM. At the same concentration, the mutant increased shear-induced platelet aggregation (SIPA) at 500s-1 and 5000s-1 shear rates, reaching 42% and 66%, respectively, while SIPA did not exceed 18% in the presence of WT. The anti-αIIbβ3 antibody 7E3 blocked the effect of the mutant on SIPA. Blood was then incubated with the mutant (250 nM) and perfused over a surface coated with fibrin(ogen) at different shear rates. Blood containing WT resulted in <10% surface coverage by platelets after 1.5 minutes while platelets from blood containing the mutant rapidly bound covering 100% of the fibrin(ogen) surface area at 1500s-1. At shear rate of 2500s-1, surface coverage was 20% for the mutant and 0% for WT fragment. EDTA and antibodies 6D1 (GPIbα) and 10E5 (αIIbβ3) effectively blocked mutant-mediated platelet adhesion and thrombus formation under high shear rates. The addition of ristocetin (0.5 mg/ml) to whole blood prior perfusion reproduced the effect of the mutant. Here, we describe an A1A2A3 mutant that bound spontaneously to GPIbα but affected differently RIPA and SIPA. These results suggest that hydrodynamic forces directly act on the GPIbα-mutant A1A2A3 complex, regulating signaling. In addition, platelet activation induced by the binding of soluble mutant A1A2A3 or plasma VWF results in αIIbβ3-mediated platelet adhesion to fibrin(ogen) under high shear rates. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3796-3803 ◽  
Author(s):  
Nadine Ajzenberg ◽  
Anne-Sophie Ribba ◽  
Ghassem Rastegar-Lari ◽  
Dominique Meyer ◽  
Dominique Baruch

The aim was to better understand the function of von Willebrand factor (vWF) A1 domain in shear-induced platelet aggregation (SIPA), at low (200) and high shear rate (4000 seconds-1) generated by a Couette viscometer. We report on 9 fully multimerized recombinant vWFs (rvWFs) expressing type 2M or type 2B von Willebrand disease (vWD) mutations, characterized respectively by a decreased or increased binding of vWF to GPIb in the presence of ristocetin. We expressed 4 type 2M (-G561A, -E596K, -R611H, and -I662F) and 5 type 2B (rvWF-M540MM, -V551F, -V553M, -R578Q, and -L697V). SIPA was strongly impaired in all type 2M rvWFs at 200 and 4000 seconds-1. Decreased aggregation was correlated with ristocetin binding to platelets. In contrast, a distinct effect of botrocetin was observed, since type 2M rvWFs (-G561A, -E596K, and -I662F) were able to bind to platelets to the same extent as wild type rvWF (rvWF-WT). Interestingly, SIPA at 200 and 4000 seconds-1 confirmed the gain-of-function phenotype of the 5 type 2B rvWFs. Our data indicated a consistent increase of SIPA at both low and high shear rates, reaching 95% of total platelets, whereas SIPA did not exceed 40% in the presence of rvWF-WT. Aggregation was completely inhibited by monoclonal antibody 6D1 directed to GPIb, underlining the importance of vWF-GPIb interaction in type 2B rvWF. Impaired SIPA of type 2M rvWF could account for the hemorrhagic syndrome observed in type 2M vWD. Increased SIPA of type 2B rvWF could be responsible for unstable aggregates and explain the fluctuant thrombocytopenia of type 2B vWD.


1988 ◽  
Vol 60 (01) ◽  
pp. 030-034 ◽  
Author(s):  
Eva Bastida ◽  
Juan Monteagudo ◽  
Antonio Ordinas ◽  
Luigi De Marco ◽  
Ricardo Castillo

SummaryNative von Willebrand factor (N-vWF) binds to platelets activated by thrombin, ADP or ristocetin. Asialo vWF (As-vWF) induces platelet aggregation in absence of platelet activators. N-vWF mediates platelet adhesion to vessel subendothelium at high shear rates. We have investigated the role of As-vWF in supporting platelet deposition to rabbit vessel subendothelium at a shear rate of 2,000 sec-1, using the Baumgartner perfusion system. We have studied the effects of the addition of As-vWF (from 2 to 12 μg/ml) to perfusates consisting of washed red blood cells, 4% human albumin and washed platelets. Our results show a significant increase in platelet deposition on subendothelium (p <0.01) in perfusions to which As-vWF had been added. Blockage of the platelet glycoproteins Ib and IIb/IIIa (GPIb and GPIIb/IIIa) by specific monoclonal antibodies (LJIb1 and LJCP8, respectively) resulted in a decrease of platelet deposition in both types of perfusates prepared with N-vWF and As-vWF. Our results indicate that As-vWF enhances platelet deposition to vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is mediated by the binding of As-vWF to platelet membrane receptors, which in turn, promote platelet spreading and adhesion to the subendothelium.


1994 ◽  
Vol 86 (2) ◽  
pp. 327-332 ◽  
Author(s):  
Edith Fressinaud ◽  
Augusto B. Federici ◽  
Giancarlo Castaman ◽  
Chantal Rothschild ◽  
Francesco Rodeghiero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document