Tie-2-Expression Controls the Radio-Sensitivity of Hematopoietic Stem/Progenitor Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4034-4034
Author(s):  
Kenji Takahashi ◽  
Satoru Monzen ◽  
Ikuo Kashiwakura

Abstract Tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (Tie-2) and its ligand, angiopoietin-1 (Ang-1) play an important role in the remodeling and maturation the vessels. However, Tie-2 expressed in hematopoietic stem cells has been reported to interact with Ang-1 on stromal osteoblasts in the bone marrow niche. This interaction leads to tight adhesion of hematopoietic stem cells to stromal cells, resulting in the maintenance of long-term repopulating activity of hematopoietic stem cells. Although the high radio-sensitivity of hematopoietic stem/progenitor cells is a serious cause of radiation damage in accidentally irradiated victims, the relationship of Tie-2/Ang-1-signals relate to radio-sensitivity is unclear. In addition, a diagnosis of specific radio-sensitivity in patients with malignant diseases allows radio- and/or chemo-therapy to be performed more effectively. Therefore, the radio-protection activity and the possible association of to radio-sensitivity in hematopoietic stem/progenitor of Tie-2/Ang-1 signaling was evaluated. This study was approved by the Committee of Medical Ethics of Hirosaki University School of Medicine. CD34+ hematopoietic stem/progenitor cells were isolated using a magnet sorting kit from human placental and umbilical cord blood units (n = 33) at the end of full-term deliveries after obtaining informed consent from the mothers. Each purified CD34+ fraction individually (81.3 ± 13.7%) was analyzed for the expression of Tie-2 using a flow cytometer. The range of Tie-2-expression was 1.6 ∼ 12.4% (mean = 5.13%). Based on the Tie-2-positive rate, all 33 fractions were classified into CD34+/Tie-2low fraction (Tie-2 positive rate; < 5%, n = 17) or CD34+/Tie-2high fraction (Tie-2 positive rate; ≥ 5%, n = 16). The CD34+ cells were exposed to X-rays at 2 Gy by an X-rays generator (150 kVp, 20 mA, 0.8 ∼ 0.95 Gy/min). The radio-sensitivity of the hematopoietic stem/progenitor cells of each specimen was measured using clonogenic assays. Specifically, the BFU-E, CFU-GM and CFU-GEMM of each sample were assessed in triplicate using a 14-day culture assay in a methylcellulose medium with 5 growth factors (EPO; 4 U/ml, SCF and IL-3; 100 ng/ml, G-CSF and GM-CSF; 10 ng/ml). In addition, CFU-Meg was assessed in triplicate using a 14-day plasma clot technique with 2 growth factors (TPO; 50 ng/ml, SCF; 100 ng/ml). Unexpectedly, the total CFC number decreased with the expression of Tie-2 in CD34+ cells and the total CFC number in CD34+/Tie-2high fractions was lower than that of CD34+/Tie-2low fractions. Moreover, the survival of total CFC at 2 Gy and Tie-2-expression were positively correlated in the CD34+ cells and the total CFC number in CD34+/Tie-2high fractions was more resistant to X-rays than that of CD34+/Tie-2low fractions. Furthermore, to clarify the interaction radio-sensitivity and Tie-2-expression, the effect of Ang-1 on the radio-protective activity in X-irradiated CD34+ cells was examined. However, no protective effect was observed. Although previous reports have showed that CD34+/Tie-2+ cells were more primitive than CD34+/Tie-2− cells, these results suggested that Tie-2-expression appeared to enhance the radio-resistant ability of CD34+ cells and that it was a marker for a radio-sensitivity. Since the direct activation by Ang-1 was not associated with the survival of X-irradiated CD34+ cells, another signaling mechanism may thus be involved in the radio-resistance activity of Tie-2.

Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4632-4633 ◽  
Author(s):  
Andreas L. Petzer ◽  
Hans-Georg Speth ◽  
Elisabeth Hoflehner ◽  
Johannes Clausen ◽  
David Nachbaur ◽  
...  

Hematopoietic stem cell grafts from unrelated donors are commonly transported by aircraft. They must not be subjected to x-rays during security checks, which may cause inconvenient discussions between the courier and the airport security staff. We exposed hematopoietic stem cells from mobilized peripheral blood to a widely used x-ray hand-luggage control system. Cell viability as well as growth in vitro of mature progenitor cells (colony-forming cells), primitive progenitor cells (long-term culture-initiating cells), and lymphocytes were not altered even after 10 passages through the hand-luggage control system. Thus, repeated exposure to the low radiation dose of hand-luggage control systems (1.5 ± 0.6 μSv per exposure) seems to be harmless for hematopoietic stem cells, which should simplify the international transport of stem cell grafts.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Mo A. Dao ◽  
Jesusa Arevalo ◽  
Jan A. Nolta

Abstract The cell surface protein CD34 is frequently used as a marker for positive selection of human hematopoietic stem/progenitor cells in research and in transplantation. However, populations of reconstituting human and murine stem cells that lack cell surface CD34 protein have been identified. In the current studies, we demonstrate that CD34 expression is reversible on human hematopoietic stem/progenitor cells. We identified and functionally characterized a population of human CD45+/CD34− cells that was recovered from the bone marrow of immunodeficient beige/nude/xid (bnx) mice 8 to 12 months after transplantation of highly purified human bone marrow–derived CD34+/CD38− stem/progenitor cells. The human CD45+ cells were devoid of CD34 protein and mRNA when isolated from the mice. However, significantly higher numbers of human colony-forming units and long-term culture-initiating cells per engrafted human CD45+ cell were recovered from the marrow of bnx mice than from the marrow of human stem cell–engrafted nonobese diabetic/severe combined immunodeficient mice, where 24% of the human graft maintained CD34 expression. In addition to their capacity for extensive in vitro generative capacity, the human CD45+/CD34− cells recovered from thebnx bone marrow were determined to have secondary reconstitution capacity and to produce CD34+ progeny following retransplantation. These studies demonstrate that the human CD34+ population can act as a reservoir for generation of CD34− cells. In the current studies we demonstrate that human CD34+/CD38− cells can generate CD45+/CD34− progeny in a long-term xenograft model and that those CD45+/CD34− cells can regenerate CD34+ progeny following secondary transplantation. Therefore, expression of CD34 can be reversible on reconstituting human hematopoietic stem cells.


Author(s):  
Aidan E. Gilchrist ◽  
Brendan A.C. Harley

AbstractHematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive external cues from their local microenvironment. The complex milieu of biophysical cues, cellular components, and cell-secreted factors regulates the process by which HSC produce the blood and immune system. We previously showed direct co-culture of primary murine hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors produced by combined mesenchymal and hematopoietic progeny. Partial Least Squares Regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP, and TROY as positively correlated with HSC maintenance. Experimentally, we then observe exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day culture 7.52 ± 3.65 fold compared to non-stimulated monocultures. Findings suggest a cocktail of the downselected cytokines amplify hematopoietic maintenance potential of HSCs beyond that of MSPC-secreted factors alone. This work integrates empirical and computation methods to identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, suggesting a route towards identifying feeder-free culture platforms for HSC expansion.InsightHematopoietic stem cells within an artificial niche receive maintenance cues in the form of soluble factors from hematopoietic and mesenchymal progeny. Applying a proteomic regression analysis, we identify a reduced set of soluble factors correlated to maintenance of a hematopoietic phenotype during culture in a biomaterial model of the bone marrow niche. We identify a minimum factor cocktail that promotes hematopoietic maintenance potential in a gelatin-based culture, regardless of the presence of mesenchymal feeder-cells. By combining empirical and computational methods, we report an experimentally feasible number of factors from a large dataset, enabling exogenous integration of soluble factors into an engineered hematopoietic stem cell for enhance maintenance potential of a quiescent stem cell population.


Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3263-3272 ◽  
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Hideki Mitsui ◽  
Keisuke Aoyama ◽  
Jun Ishikawa ◽  
...  

Abstract Fibronectin (FN) is supposed to play important roles in various aspects of hematopoiesis through binding to very late antigen 4 (VLA4) and VLA5. However, effects of FN on hematopoietic stem cells are largely unknown. In an effort to determine if FN had a growth-supporting activity on hematopoietic stem cells, human CD34+/VLA4bright/VLA5dullhematopoietic stem cells and a murine stem cell factor (SCF)-dependent multipotent cell line, EML-C1, were treated with or without FN in a serum and growth-factor–deprived medium, and then subjected to clonogenic assay in the presence of hematopoietic growth factors. The pretreatment of the CD34+ cells with FN gave rise to significantly increased numbers of granulocyte-macrophage colony-forming units (CFU-GM), erythroid burst colony-forming units, and mixed erythroid-myeloid colony-forming units. In addition, the numbers of blast colony-forming units and CFU-GM that developed after culture of EML-C1 cells with SCF and the combination of SCF and interleukin-3, respectively, were augmented by the pretreatment with FN. The augmented colony formation by FN was completely abrogated by the addition of CS1 fragment, but not of GRGDSP peptide, suggesting an essential role of FN-VLA4 interaction in the FN effects. Furthermore, the effects of various FN fragments consisting of RGDS-containing cell-binding domain (CBD), heparin-binding domain (HBD), and/or CS1 portion were tested on clonogenic growth of CD34+ cells. Increased colony formation was induced by CBD-CS1 and CBD-HBD-CS1 fragments, but not with other fragments lacking CBD or CS1 domains, suggesting that both CS1 and CBD of FN were required for the augmentation of clonogenic growth of hematopoietic stem/progenitor cells in vitro. In addition to the in vitro effects, the in vivo administration of CBD-CS1 fragment into mice was found to increase the numbers of hematopoietic progenitor cells in bone marrow and spleen in a dose-dependent manner. Thus, FN may function on hematopoietic stem/progenitor cells as a growth-supporting factor in vitro and in vivo.


2020 ◽  
Vol 12 (7) ◽  
pp. 175-187 ◽  
Author(s):  
Aidan E Gilchrist ◽  
Brendan A C Harley

Abstract Hematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive external cues from their local microenvironment. The complex milieu of biophysical cues, cellular components and cell-secreted factors regulates the process by which HSC produce the blood and immune system. We previously showed direct coculture of primary murine hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors produced by combined mesenchymal and hematopoietic progeny. Partial least squares regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP and TROY as positively correlated with HSC maintenance. Experimentally, we then observe exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day culture 7.52 ± 3.65-fold compared to non-stimulated monocultures. Findings suggest a cocktail of the downselected cytokines amplifies hematopoietic maintenance potential of HSCs beyond that of MSPC-secreted factors alone. This work integrates empirical and computation methods to identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, suggesting a route toward identifying feeder-free culture platforms for HSC expansion. Insight Hematopoietic stem cells within an artificial niche receive maintenance cues in the form of soluble factors from hematopoietic and mesenchymal progeny. Applying a proteomic regression analysis, we identify a reduced set of soluble factors correlated to maintenance of a hematopoietic phenotype during culture in a biomaterial model of the bone marrow niche. We identify a minimum factor cocktail that promotes hematopoietic maintenance potential in a gelatin-based culture, regardless of the presence of mesenchymal feeder cells. By combining empirical and computational methods, we report an experimentally feasible number of factors from a large dataset, enabling exogenous integration of soluble factors into an engineered hematopoietic stem cell for enhanced maintenance potential of a quiescent stem cell population.


Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3263-3272 ◽  
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Hideki Mitsui ◽  
Keisuke Aoyama ◽  
Jun Ishikawa ◽  
...  

Fibronectin (FN) is supposed to play important roles in various aspects of hematopoiesis through binding to very late antigen 4 (VLA4) and VLA5. However, effects of FN on hematopoietic stem cells are largely unknown. In an effort to determine if FN had a growth-supporting activity on hematopoietic stem cells, human CD34+/VLA4bright/VLA5dullhematopoietic stem cells and a murine stem cell factor (SCF)-dependent multipotent cell line, EML-C1, were treated with or without FN in a serum and growth-factor–deprived medium, and then subjected to clonogenic assay in the presence of hematopoietic growth factors. The pretreatment of the CD34+ cells with FN gave rise to significantly increased numbers of granulocyte-macrophage colony-forming units (CFU-GM), erythroid burst colony-forming units, and mixed erythroid-myeloid colony-forming units. In addition, the numbers of blast colony-forming units and CFU-GM that developed after culture of EML-C1 cells with SCF and the combination of SCF and interleukin-3, respectively, were augmented by the pretreatment with FN. The augmented colony formation by FN was completely abrogated by the addition of CS1 fragment, but not of GRGDSP peptide, suggesting an essential role of FN-VLA4 interaction in the FN effects. Furthermore, the effects of various FN fragments consisting of RGDS-containing cell-binding domain (CBD), heparin-binding domain (HBD), and/or CS1 portion were tested on clonogenic growth of CD34+ cells. Increased colony formation was induced by CBD-CS1 and CBD-HBD-CS1 fragments, but not with other fragments lacking CBD or CS1 domains, suggesting that both CS1 and CBD of FN were required for the augmentation of clonogenic growth of hematopoietic stem/progenitor cells in vitro. In addition to the in vitro effects, the in vivo administration of CBD-CS1 fragment into mice was found to increase the numbers of hematopoietic progenitor cells in bone marrow and spleen in a dose-dependent manner. Thus, FN may function on hematopoietic stem/progenitor cells as a growth-supporting factor in vitro and in vivo.


1988 ◽  
Vol 167 (6) ◽  
pp. 1825-1840 ◽  
Author(s):  
C E Müller-Sieburg ◽  
K Townsend ◽  
I L Weissman ◽  
D Rennick

Three distinct hematopoietic populations derived from normal bone marrow were analyzed for their response to defined growth factors. The Thy-1loT- B- G- M-population, composing 0.2% of bone marrow, is 370-fold enriched for pluripotent hematopoietic stem cells. The two other populations, the Thy-1- T- B- G- M- and the predominantly mature Thy-1+ T+ B+ G+ M+ cells, lack stem cells. Thy-1loT- B- G- M- cells respond with a frequency of one in seven cells to IL-3 in an in vitro CFU-C assay, and give rise to many mixed colonies as expected from an early multipotent or pluripotent progenitor. The Thy-1- T- B- G- M- population also contains progenitor cells which responded to IL-3. However, colonies derived from Thy-1- T- B- G- M- cells are almost exclusively restricted to the macrophage/granulocyte lineages. This indicates that IL-3 can stimulate at least two distinct clonogenic early progenitor cells in normal bone marrow: multipotent Thy-1loT- B- G- M- cells and restricted Thy-1- T- B- G- M- cells. Thy-1loT- B- G- M-cells could not be stimulated by macrophage colony-stimulating factor (M-CSF), granulocyte CSF (G-CSF) or IL-5 (Eosinophil-CSF). The hematopoietic precursors that react to these factors are enriched in the Thy-1- T- G- B- M- population. Thus, multipotent and restricted progenitors can be separated on the basis of the expression of the cell surface antigen Thy-1.


1996 ◽  
Vol 31 (1-2) ◽  
pp. 51-64 ◽  
Author(s):  
Zohreh Heidari ◽  
Ken-ichi Isobe ◽  
Kazutoshi Kiuchi ◽  
Setsuko Goto ◽  
Izumi Nakashima ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5720-5726 ◽  
Author(s):  
John F. DiPersio ◽  
Edward A. Stadtmauer ◽  
Auayporn Nademanee ◽  
Ivana N. M. Micallef ◽  
Patrick J. Stiff ◽  
...  

Abstract This phase 3, multicenter, randomized (1:1), double-blind, placebo-controlled study evaluated the safety and efficacy of plerixafor with granulocyte colony-stimulating factor (G-CSF) in mobilizing hematopoietic stem cells in patients with multiple myeloma. Patients received G-CSF (10 μg/kg) subcutaneously daily for up to 8 days. Beginning on day 4 and continuing daily for up to 4 days, patients received either plerixafor (240 μg/kg) or placebo subcutaneously. Starting on day 5, patients began daily apheresis for up to 4 days or until more than or equal to 6 × 106 CD34+ cells/kg were collected. The primary endpoint was the percentage of patients who collected more than or equal to 6 × 106 CD34+ cells/kg in less than or equal to 2 aphereses. A total of 106 of 148 (71.6%) patients in the plerixafor group and 53 of 154 (34.4%) patients in the placebo group met the primary endpoint (P < .001). A total of 54% of plerixafor-treated patients reached target after one apheresis, whereas 56% of the placebo-treated patients required 4 aphereses to reach target. The most common adverse events related to plerixafor were gastrointestinal disorders and injection site reactions. Plerixafor and G-CSF were well tolerated, and significantly more patients collected the optimal CD34+ cell/kg target for transplantation earlier compared with G-CSF alone. This study is registered at www.clinicaltrials.gov as #NCT00103662.


Sign in / Sign up

Export Citation Format

Share Document