Predicting Structural and Serologic Modifications in Blood Group Antigens by Homology Modeling.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 451-451
Author(s):  
Connie M. Westhoff ◽  
Dwane E. Wylie

Abstract Homology modeling of blood group proteins offers the possibility of predicting the effect of amino acid changes on serologic phenotype and immunogenicity. The location of an amino acid change within known structural motifs, its phylogenetic conservation, and its proximity to known epitopes give insight into its potential effect on protein structure and, consequently, its clinical significance. We applied this approach to investigate the loss of membrane expression of the Dombrock blood group antigens in a patient with a single amino acid change and to investigate RhD alterations in weak D phenotypes. The Dombrock homology model was derived with rat ART2.2 crystal structure as template. For the RhD model, the crystal structure of the Rh-like-ammonia transporter from Nitrosomonas europaea was used. Protein alignment was derived with Clustal X, adjusted visually, and submitted to the Swiss Modeling server. Models were viewed with Deep View Swiss Pdb Viewer. The Dombrock null containes a Phe62Ser substitution. This Phe (F) residue is located in an FDDQY motif near the COOH terminus. This region of the protein also contains a HYYLT motif. These two motifs are highly conserved in the ART protein family and contribute several aromatic amino acids to this region of the molecule. Aromatic side chain interactions between these residues could contribute to the stability of the Do protein. In support, the distance in the ART2.2 crystal structure between Phe in FDDQY and His in HYYLT is 3.7 Å, which is the appropriate distance for aromatic side chain interactions. This is also the measured distance between these two residues in the Do model. Thus, protein modeling indicates that the Phe62Ser mutation disrupts important stacking interactions between Phe62 and His160. When amino acid changes causing weak D phenotypes were examined, some of those affecting expression of RhD were located near the vestigial transport channel. These include the Trp220Arg mutation (weak D Type 16). This Trp residue is part of the transport channel in Nitrosomonas and is conserved in Rh proteins of almost all species. Its role in maintaining Rh structure is indicated by the dramatic effect its modification has on protein and epitope expression. Additionally, Arg114Trp change (weak D Type 17), which is also near the channel, reduces D expression to only 66 antigen sites/cell. GlyXXXGly motifs stabilize interactions of adjacent alpha helices in membrane proteins. Evidence for a role in stabilization of RhD is revealed by the Gly282Asp mutation (weak D Type 15) which is part of such a motif. In addition, a D-epitope in loop 3 is near the 282Asp residue. Alteration of helical packing accompanied by epitope conformation could explain production of anti-D in patients with weak D Type 15. Homology modeling is an important tool for understanding the structure and serologic bases of blood group proteins and will continue to give important insight as more protein crystal structures become available.

2003 ◽  
Vol 77 (23) ◽  
pp. 12562-12571 ◽  
Author(s):  
Ming Tan ◽  
Pengwei Huang ◽  
Jaroslaw Meller ◽  
Weiming Zhong ◽  
Tibor Farkas ◽  
...  

ABSTRACT Noroviruses (NORs) are an important cause of acute gastroenteritis. Recent studies of NOR receptors showed that different NORs bind to different histo-blood group antigens (HBGAs), and at least four distinct binding patterns were observed. To determine the structure-function relationship for NORs and their receptors, two strains representing two of the four binding patterns were studied. Strain VA387 binds to HBGAs of A, B, and O secretors, whereas strain MOH binds to HBGAs of A and B secretors only. Using multiple sequence alignments, homology modeling, and structural analysis of NOR capsids, we identified a plausible “pocket” in the P2 domain that may be responsible for binding to HBGA receptors. This pocket consists of a conserved RGD/K motif surrounded by three strain-specific hot spots (N302, T337, and Q375 for VA387 and N302, N338, and E378 for MOH). Subsequent mutagenesis experiments demonstrated that all four sites played important roles in binding. A single amino acid mutation at T337 (to A) in VA387 or a double amino acid mutation at RN338 (to TT) in MOH abolished binding completely. Change of the entire RGD motif to SAS abolished binding in case of VA387, whereas single amino acid mutations in that motif did not have an apparent effect on binding to A and B antigens but decreased binding to H antigen. Multiple mutations at the RGK motif of MOH (SIRGK to TFRGD) completely knocked out the binding. Mutation of N302 or Q375 in VA387 affected binding to type O HBGA only, while switch mutants with three amino acid changes at either site from MOH to VA387 resulted in a weak binding to type O HBGAs. A further switch mutant with three amino acid changes at E378 from MOH to VA387 diminished the binding to type A HBGA only. Taken together, our data indicate that the binding pocket likely exists on NOR capsids. Direct evidence of this hypothesis requires crystallography studies.


2009 ◽  
Vol 90 (7) ◽  
pp. 1741-1747 ◽  
Author(s):  
Tahir H. Malik ◽  
Candie Wolbert ◽  
Laura Nerret ◽  
Christian Sauder ◽  
Steven Rubin

It has previously been shown that three amino acid changes, one each in the fusion (F; Ala/Thr-91→Thr), haemagglutinin–neuraminidase (HN; Ser-466→Asn) and polymerase (L; Ile-736→Val) proteins, are associated with attenuation of a neurovirulent clinical isolate of mumps virus (88-1961) following serial passage in vitro. Here, using full-length cDNA plasmid clones and site-directed mutagenesis, it was shown that the single amino acid change in the HN protein and to a lesser extent, the change in the L protein, resulted in neuroattenuation, as assessed in rats. The combination of both amino acid changes caused neuroattenuation of the virus to levels previously reported for the clinical isolate following attenuation in vitro. The amino acid change in the F protein, despite having a dramatic effect on protein function in vitro, was previously shown to not be involved in the observed neuroattenuation, highlighting the importance of conducting confirmatory in vivo studies. This report provides additional supporting evidence for the role of the HN protein as a virulence factor and, as far as is known, is the first report to associate an amino acid change in the L protein with mumps virus neuroattenuation.


FEBS Letters ◽  
2000 ◽  
Vol 470 (2) ◽  
pp. 135-138 ◽  
Author(s):  
H. Vais ◽  
S. Atkinson ◽  
N. Eldursi ◽  
A.L. Devonshire ◽  
M.S. Williamson ◽  
...  

2012 ◽  
Vol 58 (5) ◽  
pp. 589-595
Author(s):  
Guy Lemay ◽  
Martin Bisaillon

Many temperature-sensitive mutants have been isolated in early studies of mammalian reovirus. However, the biological properties and nature of the genetic alterations remain incompletely explored for most of these mutants. The mutation harbored by the tsI138 mutant was already assigned to the L3 gene encoding the λ1 protein. In the present study, this mutant was further studied as a possible tool to establish the role of the putative λ1 enzymatic activities in viral multiplication. It was observed that synthesis of viral proteins is only marginally reduced, while it was difficult to recover viral particles at the nonpermissive temperature. A single nucleotide substitution resulting in an amino acid change was found; the position of this amino acid is consistent with a probable defect in assembly of the inner capsid at the nonpermissive temperature.


2017 ◽  
Vol 175 (4) ◽  
pp. 1720-1731 ◽  
Author(s):  
Shun Sakuma ◽  
Udda Lundqvist ◽  
Yusuke Kakei ◽  
Venkatasubbu Thirulogachandar ◽  
Takako Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document