MicroRNA Profiling of Human Acute Myeloid Leukemia and Normal Hematopoietic Stem/Progenitor Cells Reveals a Leukemia Stem Cell Signature.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 779-779
Author(s):  
Christopher Y. Park ◽  
Yulei Wang ◽  
Susan Prohaska ◽  
Diane Tseng ◽  
Irving L. Weissman

Abstract While numerous studies have contributed important insights into the molecular origins of human acute myeloid leukemia (AML), many may not accurately reflect molecular pathways critical to AML development or maintenance because they ignore the inherent heterogeneity among AML blasts. One subset of blasts - leukemia stem cells (LSCs) - exhibits the unique ability to self-renew and to engraft disease in immunodeficient mouse hosts, suggesting that their elimination is critical to developing curative therapies. In addition, there is little information regarding the role of microRNAs (miRNAs) in regulating gene expression or biologic function in AML. In order to assess the potential contribution of miRNAs to AML LSC biology, we have evaluated the expression profile of 315 mature miRNAs in FACS-purified AML LSC and compared it to both non-LSC blasts as well as normal human bone marrow (BM) derived hematopoietic stem cells (HSC) and committed progenitors using a multiplexed TaqMan-based real-time PCR strategy. SAM analysis with stringent criteria (at least 25% samples with Ct <30, FDR <1%) reveals that AML LSC and non-LSC blasts are more similar to one another than to normal HSC or committed progenitors. Among the BM populations tested, AML LSC and non-LSC populations are most similar to the granulocyte-macrophage progenitor (GMP). A set of miRNAs distinguishes AML LSC and non-LSC from normal HSC and committed progenitors, including 35 miRNAs that are under-expressed and 33 miRNAs that are over-expressed in both AML fractions versus the normal populations; many of these differentially expressed miRNAs show a range of expression exceeding 3 orders of magnitude. Supervised clustering analysis of AML LSC and non-LSC blasts reveals an LSC signature composed of 89 miRNAs, with nearly all differentially expressed miRNAs (86/89) exhibiting lower expression levels in AML LSC than non-LSC blasts. Finally, supervised clustering identifies a “stem-cell” signature composed of 17 miRNAs that are over-expressed in AML LSC and HSC versus committed progenitors. This group of miRNAs does not include miRNAs previously described as being highly expressed in embryonic stem cells. Together, these studies represent the first direct comparison of miRNA expression in a human cancer stem cell to its normal counterpart, thereby identifying miRNAs that may regulate AML LSC and/or normal HSC/committed progenitor function. Initial functional studies in vivo using LNA knockdown strategies indicate that a subset of miRNAs highly expressed in HSC and LSC is important in regulating normal HSC function. We are currently expanding these studies to test the role of these miRNAs in maintaining engrafted AMLs in the xenotransplant setting.

2019 ◽  
Vol 20 (23) ◽  
pp. 5826 ◽  
Author(s):  
Tobias Gluexam ◽  
Alexander M. Grandits ◽  
Angela Schlerka ◽  
Chi Huu Nguyen ◽  
Julia Etzler ◽  
...  

The neuropeptide CGRP, acting through the G-protein coupled receptor CALCRL and its coreceptor RAMP1, plays a key role in migraines, which has led to the clinical development of several inhibitory compounds. Recently, high CALCRL expression has been shown to be associated with a poor prognosis in acute myeloid leukemia (AML). We investigate, therefore, the functional role of the CGRP-CALCRL axis in AML. To this end, in silico analyses, human AML cell lines, primary patient samples, and a C57BL/6-based mouse model of AML are used. We find that CALCRL is up-regulated at relapse of AML, in leukemic stem cells (LSCs) versus bulk leukemic cells, and in LSCs versus normal hematopoietic stem cells. CGRP protects receptor-positive AML cell lines and primary AML samples from apoptosis induced by cytostatic drugs used in AML therapy, and this effect is inhibited by specific antagonists. Furthermore, the CGRP antagonist olcegepant increases differentiation and reduces the leukemic burden as well as key stem cell properties in a mouse model of AML. These data provide a basis for further investigations into a possible role of CGRP-CALCRL inhibition in the therapy of AML.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1835-1835
Author(s):  
Fenghua Qian ◽  
Fenghua Qian ◽  
Diwakar Tukaramrao ◽  
Jiayan Zhou ◽  
Nicole Palmiero ◽  
...  

Abstract Objectives The relapse of acute myeloid leukemia (AML) remains a significant concern due to persistent leukemia stem cells (LSCs) that are not targeted by existing therapies. LSCs show sensitivity to endogenous cyclopentenone prostaglandin J (CyPG) metabolites that are increased by dietary trace element selenium (Se), which is significantly decreased in AML patients. We investigated the anti-leukemic effect of Se supplementation in AML via mechanisms involving the activation of the membrane-bound G-protein coupled receptor 44 (Gpr44) and the intracellular receptor, peroxisome proliferator-activated receptor gamma (PPARγ), by endogenous CyPGs. Methods A murine model of AML generated by transplantation of hematopoietic stem cells (HSCs- WT or Gpr44−/−) expressing human MLL-AF9 fusion oncoprotein, in the following experiments: To investigate the effect of Se supplementation on the outcome of AML, donor mice were maintained on either Se-adequate (Se-A; 0.08–0.1 ppm Se) or Se-supplemented (Se-S; 0.4 ppm Se) diets. Complete cell counts in peripheral blood were analyzed by hemavet. LSCs in bone marrow and spleen were analyzed by flow cytometry. To determine the role of Gpr44 activation in AML, mice were treated with Gpr44 agonists, CyPGs. LSCs in bone marrow and spleen were analyzed. Mice transplanted with Gpr44−/- AML cells were compared with mice transplanted with wild type AML cells and the progression of the disease was followed as above. To determine the role of PPARγ activation in AML, PPARγ agonist (Rosiglitazone, 6 mg/kg, i.p, 14 d) and antagonist (GW9662, 1 mg/kg, i.p. once every other day, 7 injections) were applied to Se-S mice transplanted with Gpr44−/- AML cells and disease progression was followed. Results Se supplementation at supraphysiological levels alleviated the disease via the elimination of LSCs in a murine model of AML. CyPGs induced by Se supplementation mediate the apoptosis in LSCs via the activation of Gpr44 and PPARγ. Conclusions Endogenous CyPGs produced upon supplementation with Se at supraphysiological levels improved the outcome of AML by targeting LSCs to apoptosis via the activation of two receptors, Gpr44 and PPARg. Funding Sources NIH DK 07,7152; CA 175,576; CA 162,665. Office of Dietary Supplements, USDA Hatch funds PEN04605, Accession # 1,010,021 (KSP, RFP).


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 683-683
Author(s):  
Christopher Y. Park ◽  
Yoon-Chi Han ◽  
Govind Bhagat ◽  
Jian-Bing Fan ◽  
Irving L Weissman ◽  
...  

Abstract microRNAs (miRNAs) are short, non-protein encoding RNAs that bind to the 3′UTR’s of target mRNAs and negatively regulate gene expression by facilitating mRNA degradation or translational inhibition. Aberrant miRNA expression is well-documented in both solid and hematopoietic malignancies, and a number of recent miRNA profiling studies have identified miRNAs associated with specific human acute myeloid leukemia (AML) cytogenetic groups as well as miRNAs that may prognosticate clinical outcomes in AML patients. Unfortunately, these studies do not directly address the functional role of miRNAs in AML. In fact, there is no direct functional evidence that miRNAs are required for AML development or maintenance. Herein, we report on our recent efforts to elucidate the role of miRNAs in AML stem cells. miRNA expression profiling of AML stem cells and their normal counterparts, hematopoietic stem cells (HSC) and committed progenitors, reveals that miR-29a is highly expressed in human hematopoietic stem cells (HSC) and human AML relative to normal committed progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors is sufficient to induce a myeloproliferative disorder (MPD) that progresses to AML. During the MPD phase of the disease, miR-29a alters the composition of committed myeloid progenitors, significantly expedites cell cycle progression, and promotes proliferation of hematopoietic progenitors at the level of the multipotent progenitor (MPP). These changes are manifested pathologically by marked granulocytic and megakaryocytic hyperplasia with hepatosplenomegaly. Mice with miR-29a-induced MPD uniformly progress to an AML that contains a leukemia stem cell (LSC) population that can serially transplant disease with as few as 20 purified LSC. Gene expression analysis reveals multiple tumor suppressors and cell cycle regulators downregulated in miR-29a expressing cells compared to wild type. We have demonstrated that one of these genes, Hbp1, is a bona fide miR-29a target, but knockdown of Hbp1 in vivo does not recapitulate the miR-29a phenotype. These data indicate that additional genes are required for miR-29a’s leukemogenic activity. In summary, our data demonstrate that miR-29a regulates early events in normal hematopoiesis and promotes myeloid differentiation and expansion. Moreover, they establish that misexpression of a single miRNA is sufficient to drive leukemogenesis, suggesting that therapeutic targeting of miRNAs may be an effective means of treating myeloid leukemias.


Sign in / Sign up

Export Citation Format

Share Document