Phase I/II Trial of a Novel Gemcitabine and Vinorelbine-Containing Conditioning Regimen in Autologous Hemotopoietic Cell Transplantation for High-Risk Recurrent and Refractory Hodgkin Lymphoma.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2194-2194
Author(s):  
Sally Arai ◽  
Renee Letsinger ◽  
Laura Johnston ◽  
Ginna Laport ◽  
Robert Lowsky ◽  
...  

Abstract Background: High dose chemotherapy and autologous hematopoietic cell transplantation (AHCT) is the most effective treatment for recurrent and refractory Hodgkin lymphoma (HL). Disease recurrence is still a major cause of treatment failure. Augmented BCNU-regimens are reported to have good outcomes but greater pulmonary toxicity. A novel transplant regimen incorporating gemcitabine and vinorelbine, active drugs in HL different from alkylating agents, was tested to establish the maximum tolerated dose (MTD) of gemcitabine and to assess safety and efficacy at the MTD. Methods: In this phase I/II study, dose escalation was performed with gemcitabine in combination with vinorelbine followed by BCNU at reduced dose, etoposide (VP-16), cyclophosphamide (CY) and AHCT. The first 7 patients had dose escalation of gemcitabine before determining the MTD at 1250 mg/m2 on the basis of elevated liver transaminases and a symptom complex of fever, headache, and skin toxicity. For phase II, a total of 92 patients with recurrent or refractory HL have been treated at the MTD to establish safety and efficacy. The regimen consists of gemcitabine 1250 mg/m2 IV at 10 mg/min and vinorelbine 30 mg/m2 on day-13 and day-8, BCNU 10 mg/kg on day-6, VP-16 60 mg/kg on day-4, CY 100 mg/kg on day-2. Regimen-related toxicity, freedom from progression (FFP) and overall survival (OS) were endpoints of the trial. Results: 70 patients were high risk (based on stage IV disease at relapse, failure to achieve minimal disease, or B symptoms at relapse) and 22 patients were low risk (having no risk features). Median age was 33 years. Median follow-up is 2 years (.26–6.8 years). Median time to neutrophil engraftment was 10 days. Regimen-related toxicities of grade 3 skin rash, fever, headache and liver transaminase elevations were transient. Remarkable was the reduction in incidence of systemic steroid-requiring pulmonary toxicity <100 days post-transplant to 15.2% (14 of 92 patients treated at the MTD), as compared to our standard regimen incidence of 35%. Also encouraging is the OS at 2 years for the entire group of 81% (+/−9%) and FFP at 2 years of 71%(+−11%). By risk factors, FFP at 2 years was 95%(+−10%), 75%(+−14%), 64%(+−22%), and 19%(+−31%) for patients with 0, 1, 2, or 3 risk factors. These results compare favorably to the historical FFP of 41% for patients with one or more of these same risk factors (Horning 1997). In the current study, having 1 or 2 risk factors resulted in similar FFP with the new regimen (p=.46) and significantly improved FFP as compared to patients with 3 risk factors (1 vs 3, p<.001; 2 vs 3, p=.004)- see figure. Conclusions: This novel transplant regimen for HL has decreased incidence of pulmonary toxicity compared with augmented BCNU-regimens and is associated with encouraging OS and FFP, even in the high risk groups. Figure Figure

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3333-3333 ◽  
Author(s):  
Ryan D. Cassaday ◽  
Oliver W. Press ◽  
John M. Pagel ◽  
Joseph G. Rajendran ◽  
Theodore A. Gooley ◽  
...  

Abstract Background High-dose therapy and autologous stem cell transplant (ASCT) remains the standard of care for many high-risk/relapsed B-cell non-Hodgkin lymphomas (B-NHL), T-cell NHL (T-NHL) and classical Hodgkin lymphoma (HL), yet most will not achieve sustained remissions. High-dose anti-CD20 radioimmunotherapy (RIT) and ASCT has been successfully employed to address this challenge in B-NHL, yet relapse still occurs potentially due to blockade of target sites by circulating rituximab (R). RIT options are limited for patients with T-NHL and HL. Preclinical data indicate that targeting the panhematopoietic antigen CD45 with RIT can successfully circumvent R blocking in B-NHL and target a variety of T-NHL histologies (Gopal, 2008 & 2009). We thus performed a phase I trial using high-dose anti-CD45 RIT and ASCT for B-NHL, T-NHL, and HL. Methods Patients were ≥18 years old with relapsed, refractory, or high-risk B-NHL, T-NHL, or HL and had acceptable organ function with an ECOG performance status of 0-1 and no detectible human anti-mouse antibodies. They could not have received ≥20 Gy of prior radiation (RT) to critical organs or prior ASCT within 1 year, or prior allogeneic transplant at any time. All patients first received anti-CD45 antibody (BC8) trace-labeled with 131I followed by gamma camera imaging to evaluate biodistribution and estimate organ-specific absorbed doses. Patients then received 131I-BC8 at an absorbed dose determined by the following: Patients with prior RT >20 Gy or prior ASCT started at 10 Gy to the dose-limiting normal organ (Arm A), while others started dose escalation at 20 Gy (Arm B). Subsequent dose escalation/de-escalation followed a two-stage approach (Storer, 2001). ASCT occurred after sufficient radiation decay, and G-CSF was started on day 1. Dose limiting toxicity (DLT) was determined by Bearman grade III/IV events. The primary objective was to estimate the maximum tolerated dose, defined as that yielding a DLT rate of 25%. Responses were scored using standard criteria (Cheson, 2007). Results Between August 2009 and March 2013, 15 patients were treated. Median age was 62 years (range 20-71); stage III/IV = 11 (73%); median prior regimens = 3 (range 2-12), including 1 prior ASCT; chemorefractory disease (i.e., <PR to the most recent chemotherapy) = 8 (53%); histologies were HL (n = 6), B-NHL (n = 6), and T-NHL (n = 3; see Table). The mean administered 131I activity was 646 mCi (range 344-1064 mCi; 23.9 GBq, range 12.7-39.4 GBq). The liver was the dose-limiting normal organ in 12 patients (2.41-3.98 cGy/mCi). The absorbed dose was escalated to 14 Gy for patients in Arm A (n = 3) and 30 Gy in Arm B (n = 12). Neutrophil (>500/μl) and platelet (>20 K/μl) engraftment occurred a median of 8 (range 10-20) and 12 (range 8-26) days after ASCT, respectively. No DLTs, non-relapse deaths, or non-hematologic toxicities > NCI-CTCAE v3 grade 3 have been observed. Currently, 11 (73%) patients are alive and 7 (47%) are progression-free with a median follow-up of 12 months. Seven (54%) of 13 patients with measurable disease at enrollment had objective disease responses, including 3 of 3 with T-NHL, 3 of 6 with HL, and 1 of 1 with follicular lymphoma (FL; see Table). Conclusion Myeloablative doses of 131I targeted to CD45 are safe and feasible in patients with lymphoma, with no DLTs observed after delivery of up to 30 Gy to the liver. Objective disease responses in heavily-treated B-NHL, T-NHL, and HL were observed. This work has led to current studies using yttrium-90 as the therapeutic radionuclide (given its longer beta pathlength and absence of gamma emission) in anti-CD45 RIT for lymphoma. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 198-198 ◽  
Author(s):  
Sherif Farag ◽  
Lisa L Wood ◽  
Jennifer E. Schwartz ◽  
Shivani Srivastava ◽  
Robert P. Nelson ◽  
...  

Abstract Abstract 198 Fludarabine in combination high-dose busulfan (Bu) is an effective myeloablative preparative regimen for allogeneic stem cell transplantation. At doses used, however, fludarabine has only modest anti-leukemic activity. Clofarabine (Clo) is a second-generation purine nucleoside antimetabolite with significant single agent activity in patients with AML and ALL. The novel combination of Clo with Bu may provide improved disease activity safely. Therefore, we conducted a phase I trial to determine the maximum tolerated dose (MTD) of Clo in combination with Bu in patients with high-risk acute leukemia. Patients received i.v. Bu (Busulfex) 0.8 mg/kg q 6 hrs on days −6 to −3 and Clo at 30–60 mg/m2/day on days −6 to −2 in successive cohorts. Stem cells were infused day 0. GvHD prophylaxis included sirolimus plus tacrolimus starting day −2 to day 100, tapering to day 180. Patients were eligible if they were 18–60 years, had primary refractory or relapsed and refractory AML or ALL, or were in CR2 or higher, had Karnofsky performance status ≥70%, and adequate organ function. Donors were HLA-matched related (5/6 or 6/6 antigen-matched) or unrelated (10/10 allele-matched). Toxicity was scored using the Common Terminology Criteria for Adverse events, version 3.0. Dose limiting toxicity (DLT) was defined as any grade 3–4 non-hematologic toxicity that did not resolve to grade 2 or less by day 30. A total of 15 patients were treated at 4 Clo dose levels, 30 (n=3), 40 (n=3), 50 (n=3), and 60 mg/m2 (n=6). Seven males and 8 females of median age 48 (30–58) years, with AML (n=13) or ALL (n=2) were treated. At transplant, leukemia was relapsed and refractory (n=8), primary refractory (n=6), or in CR2 (n=1). Median number of lines of treatment failed before transplant was 2 (1–3). Median marrow blasts at transplant was 12% (3%–83%). Hematopoietic cell transplants were from related (n=9) and unrelated (n=6) donors. All patients engrafted. Median time to neutrophils >0.5×109/l was 16 (12–20) days, and to platelets >20×109/l was 15 (10–42) days. One patient treated at the 30 mg/m2 dose level failed to achieve platelets > 20×109/l. No DLT was observed. Transient Grades 3–4 non-hematological toxicities were evenly distributed across all 4 dose levels, and included vomiting (n=3), mucositis (n=9), hand-foot syndrome (n=1), and elevation of AST/ALT (n=10). Grades 3–4 elevation of AST/ALT occurred in 2 of 3 patients treated at 30 mg/m2, 3 of 3 at 40 mg/m2, 2 of 3 at 50 mg/m2, and 3 of 6 patients at 60 mg/m2 dose levels. AST/ALT peaked at day −1 or 0 and returned to baseline in all patients by day 10, with no long-term sequelae. There was no correlation between Clo dose and peak AST/ALT. One patient developed acute renal failure at the 60 mg/m2 dose on day +12 in association with elevated tacrolimus levels, although the creatinine subsequently normalized. Two patients, both at the 30 mg/m2 dose, developed mild veno-occlusive disease of the liver which was self-limiting. One treatment-related death due to sepsis was observed at day +104 in a patient treated at the 30 mg/m2 dose. Thirteen of 15 patients were in CR by day 30; 2 patients, treated at 40 mg/m2 and 50 mg/m2, respectively, failed to achieve CR. Day 100 mortality was 0. With a median follow-up of 313 days, the 1-year relapse-free survival was 51% ± 15%, and the 1-year overall survival was 61% ± 14%. Clo at doses as high as 60 mg/m2/day × 5 days in combination with Bu 3.2 mg/kg/day × 4 days is well tolerated and demonstrates promising efficacy in a very-high risk acute leukemia population. The MTD has not been reached. We recommend Phase II testing of Clo 60 mg/m2/day × 5 days in combination with high-dose Bu as a myeloablative regimen for allogeneic stem cell transplantation in patients with acute leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (23) ◽  
pp. 4934-4937 ◽  
Author(s):  
Alison J. Moskowitz ◽  
Joachim Yahalom ◽  
Tarun Kewalramani ◽  
Jocelyn C. Maragulia ◽  
Jill M. Vanak ◽  
...  

Abstract To identify prognostic factors for patients transplanted for relapsed or refractory Hodgkin lymphoma we carried out a combined analysis of patients followed prospectively on 3 consecutive protocols at Memorial Sloan-Kettering Cancer Center. One hundred fifty-three patients with chemosensitive disease after ICE (ifosfamide, carboplatin, and etoposide)–based salvage therapy (ST) proceeded to high-dose chemoradiotherapy followed by autologous stem cell transplantation (ASCT). Patients were evaluated with computed tomography and functional imaging (gallium or fluorodeoxyglucose-positron emission tomography) prior to ST and again before ASCT. Functional imaging status before ASCT was the only factor significant for event-free survival (EFS) and overall survival by multivariate analysis and clearly identifies poor risk patients (5-year EFS 31% and 75% for FI-positive and negative patients respectively). Administration of involved-field radiotherapy with ASCT was marginally significant for EFS (P = .055). Studies evaluating novel STs, conditioning regimens, post-ASCT maintenance, or allogeneic stem cell transplantation are warranted for patients who fail to normalize pre-ASCT functional imaging.


2021 ◽  
Vol 5 (6) ◽  
pp. 1648-1659 ◽  
Author(s):  
Reid W. Merryman ◽  
Robert A. Redd ◽  
Taiga Nishihori ◽  
Julio Chavez ◽  
Yago Nieto ◽  
...  

Abstract Autologous stem cell transplantation (ASCT) can be curative for patients with relapsed/refractory Hodgkin lymphoma (HL). Based on studies suggesting that anti-PD-1 monoclonal antibodies (mAbs) can sensitize patients to subsequent chemotherapy, we hypothesized that anti-PD-1 therapy before ASCT would result in acceptable outcomes among high-risk patients who progressed on or responded insufficiently to ≥1 salvage regimen, including chemorefractory patients who are traditionally considered poor ASCT candidates. We retrospectively identified 78 HL patients who underwent ASCT after receiving an anti-PD-1 mAb (alone or in combination) as third-line or later therapy across 22 centers. Chemorefractory disease was common, including 42 patients (54%) refractory to ≥2 consecutive systemic therapies immediately before anti-PD-1 treatment. Fifty-eight (74%) patients underwent ASCT after anti-PD-1 treatment, while 20 patients (26%) received additional therapy after PD-1 blockade and before ASCT. Patients received a median of 4 systemic therapies (range, 3-7) before ASCT, and 31 patients (41%) had a positive pre-ASCT positron emission tomography (PET) result. After a median post-ASCT follow-up of 19.6 months, the 18-month progression-free survival (PFS) and overall survival were 81% (95% CI, 69-89) and 96% (95% confidence interval [CI], 87-99), respectively. Favorable outcomes were observed for patients who were refractory to 2 consecutive therapies immediately before PD-1 blockade (18-month PFS, 78%), had a positive pre-ASCT PET (18-month PFS, 75%), or received ≥4 systemic therapies before ASCT (18-month PFS, 73%), while PD-1 nonresponders had inferior outcomes (18-month PFS, 51%). In this high-risk cohort, ASCT after anti-PD-1 therapy was associated with excellent outcomes, even among heavily pretreated, previously chemorefractory patients.


Sign in / Sign up

Export Citation Format

Share Document