Modeling Anemia of Aging in Inbred Mouse Strains

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3444-3444
Author(s):  
Luanne L. Peters ◽  
Shirng-wern Tsaih ◽  
Rong Yuan

Abstract Anemia of aging is now recognized as a significant medical problem. The National Health and Nutrition Examination Survey (NHANES III) revealed a steady increase in anemia in both males and females after the age of 50. Based upon the WHO definition of anemia (<13 g/dL hemoglobin (Hgb) in men; <12 g/dL in women), ~10% of the community dwelling population ≥ 65 years of age are anemic. Underlying causes fall into three broad groups, each representing ~1/3 of cases: nutritional deficits/blood loss; inflammation, kidney disease and myelodysplasia; and unexplained anemia. Although anemia of aging is usually mild, it is no longer considered a normal part of aging. It is associated with poor health and increased vulnerability to adverse outcomes in a multitude of circumstances, placing an enormous burden on the healthcare system that will only grow as the population continues to age. As part of The Jackson Laboratory Aging Center (http://agingmice.jax.org/), we are performing an extensive phenotypic analysis of multiple traits related to aging in 32 inbred mouse strains. All data are, or will be upon completion, publicly available via the Mouse Phenome Database (MPD, www.jax.org/phenome). Complete blood counts were obtained at 6, 12, 18, and 24 months of age in 30 strains. Two-way ANOVA reveals that both strain and age significantly impact Hgb in mice. A highly significant strain-by-age interaction is also seen. Substantial inter-strain and within strain sex variability in the decline in Hgb levels with age is seen among the strains analyzed, suggesting genetic influences. Significant declines in Hgb levels in females at 18 and/or 24 months vs. 6 months occurred in 21 of the 30 strains and, in males, 17 strains. Haplotype association mapping (HAM) using a dense SNP panel identified multiple distinct, age-related loci influencing Hgb levels. For example, a locus on chromosome (Chr) 13 significantly associated with Hgb levels at 12 months of age in males was not detected even at the suggestive level at 18 months of age where two new highly significant loci emerged (Chrs 14, 17). Only two strains show a statistically significant increase in percent circulating reticulocytes with age, indicative of a proliferative anemia. Failure of a significant reticulocyte response in all other strains suggests that an age-related compromise in bone marrow function (hematopoiesis-restricted anemia) predominates in aged, anemic mice. The ratio of urinary albumin to creatinine (ACR) is commonly used as an indicator of kidney damage in mice. In females, the ACR is stable and does not rise significantly with age in the majority of strains, suggesting that declining kidney function is not a major cause of anemia of aging in female inbred mice. Significant increases in IL-6 and TNFα are seen in strains 129SvImJ, C3H/HeJ, and DBA/2J, suggesting a pro-inflammatory state. From this preliminary analysis of a large ongoing project, we can conclude: Hgb levels in mice vary significantly by strain and sex, and decline significantly with age in many strains. Other baseline hematological traits (e.g., red blood cell counts, platelet counts) likewise vary by strain, age and sex. These data are available via the Mouse Phenome Database (project Peters4). The anemia of aging seen in most strains correlates most closely with restricted hematopoiesis, as indicated by the failure of the reticulocyte count to increase in response to declining Hgb levels. There is growing evidence that decrements in hematopoietic stem cell number and function play a role in the aging process in humans. Notably, hematopoietic stem cell numbers and bone marrow cellularity data will be available on the MPD as these analyses are completed. HAM analysis suggests that distinct age-related loci influence Hgb levels in mice. In a small subset of strains, anemia of aging may reflect declining kidney function, as occurs in humans. Preliminary data suggests an increase in cytokine levels in some strains, again mimicking the aging human population. Increased IL-6 levels as a cause of anemia of aging is of particular interest due to its inhibition of hepcidin and thus iron availability. Overall, the data indicate that anemia of aging occurs in mice and models that seen in elderly human populations. Additional data including iron levels, T4, BUN, and more on aging inbred mouse strains will be posted to the MPD in the near future.

Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 1957-1964 ◽  
Author(s):  
GJ Spangrude ◽  
DM Brooks

Mouse hematopoietic stem cells can be identified and enriched from populations of normal bone marrow cells by immunofluorescent labeling of cell surface molecules followed by flow cytometric separation. We show here that the majority of hematopoietic stem cell activity, as defined by long-term competitive repopulation of irradiated animals and by a secondary transplant assay for spleen colony-forming units (CFU- S), could be localized in Ly-6b haplotype mice to a fraction of bone marrow cells that expresses the Ly-6A/E (Sca-1) molecule. Further, an analysis of hematopoietic stem cell activity in bone marrow of mouse strains expressing the Thy-1.1 allele indicated that the vast majority of activity was included in the Thy-1low population. In contrast, hematopoietic stem cell activity found in the bone marrow of Thy-1.2 genotype mouse strains was recovered in both the Thy-1neg and the Thy- 1low populations. However, similar to Thy-1.1 strains, most activity was localized to the Ly-6A/E+ population of cells. The difference in Thy-1 phenotype of hematopoietic stem cell activity apparent between Thy-1.1- and Thy-1.2-expressing mouse strains was not caused by differences in the staining intensity of monoclonal antibodies (MoAbs) specific for the Thy-1 alleles. Furthermore, an antiframework MoAb that stains both alleles of Thy-1 separated hematopoietic stem cell activity from mice expressing the two alleles in the same manner as did allele- specific MoAb. The results of this study show that Thy-1 expression is not an invariant characteristic of mouse hematopoietic stem cells, and that mice expressing the Thy-1.1 allele are unique in that hematopoietic stem cell activity is found exclusively in the Thy-1low population.


Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 1957-1964 ◽  
Author(s):  
GJ Spangrude ◽  
DM Brooks

Abstract Mouse hematopoietic stem cells can be identified and enriched from populations of normal bone marrow cells by immunofluorescent labeling of cell surface molecules followed by flow cytometric separation. We show here that the majority of hematopoietic stem cell activity, as defined by long-term competitive repopulation of irradiated animals and by a secondary transplant assay for spleen colony-forming units (CFU- S), could be localized in Ly-6b haplotype mice to a fraction of bone marrow cells that expresses the Ly-6A/E (Sca-1) molecule. Further, an analysis of hematopoietic stem cell activity in bone marrow of mouse strains expressing the Thy-1.1 allele indicated that the vast majority of activity was included in the Thy-1low population. In contrast, hematopoietic stem cell activity found in the bone marrow of Thy-1.2 genotype mouse strains was recovered in both the Thy-1neg and the Thy- 1low populations. However, similar to Thy-1.1 strains, most activity was localized to the Ly-6A/E+ population of cells. The difference in Thy-1 phenotype of hematopoietic stem cell activity apparent between Thy-1.1- and Thy-1.2-expressing mouse strains was not caused by differences in the staining intensity of monoclonal antibodies (MoAbs) specific for the Thy-1 alleles. Furthermore, an antiframework MoAb that stains both alleles of Thy-1 separated hematopoietic stem cell activity from mice expressing the two alleles in the same manner as did allele- specific MoAb. The results of this study show that Thy-1 expression is not an invariant characteristic of mouse hematopoietic stem cells, and that mice expressing the Thy-1.1 allele are unique in that hematopoietic stem cell activity is found exclusively in the Thy-1low population.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3327-3332 ◽  
Author(s):  
GJ Spangrude ◽  
DM Brooks

The cell surface molecule Ly-6A/E provides a convenient marker for primitive stem cells in the hematopoietic tissues of both fetal and adult mice. However, previous studies have shown that Ly-6A/E expression by lymphocytes is variable depending on the haplotype of the Ly-6 locus. Therefore, strain-specific variation in Ly-6A/E expression by bone marrow (BM) cells was investigated. The results show that Ly-6a mice have, on average, 50% of the number of BM cells expressing Ly-6A/E relative to that for Ly-6b mice. Furthermore, among the 5% of BM cells that do not express antigens characteristic of mature T, B, myeloid, or erythroid lineages, which include the primitive hematopoietic stem cell compartment, Ly-6a mice have, on average, more than fivefold fewer Ly- 6A/E+ cells relative to that for Ly-6b mice. Isolation of Ly-6A/E- and Ly-6A/E+ cells from mice of both haplotypes showed that, whereas 99% of the marrow repopulating activity (MRA) of C57BL/Ka (Ly-6b) mice could be recovered in the Ly-6A/E+ fraction, only about 25% of the MRA of BALB/c (Ly-6a) was recoverable in the same population. On a per-cell basis, the Ly-6A/E+ cells that were isolated from BALB/c mice were essentially equivalent in MRA to those isolated from C57BL/Ka mice. Thus, whereas a large percentage of the hematopoietic stem cells of Ly- 6a mice do not express the Ly-6A/E molecule, the antigen may be used to isolate a subset of stem cells from these mice. These results show that hematopoietic stem cell phenotype can vary between mouse strains and imply that caution should be exercised in the identification of human stem cell antigens such as CD34, because a similar variability may occur between individual humans. To further explore the influence of Ly- 6 haplotype on Ly-6A/E expression by specific cell subsets, lymph-node lymphocytes from a panel of mouse strains were analyzed by multiparameter flow cytometry for correlated expression of Ly-6A/E, CD4, and CD8. All Ly-6a strains examined had less than 20% Ly-6A/E+ cells, and those cells were predominantly CD8+ T lymphocytes. In contrast, the Ly-6b strains had greater than 30% Ly-6A/E+ cells, and those cells included CD4+, CD8+, and B lymphocytes.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3327-3332 ◽  
Author(s):  
GJ Spangrude ◽  
DM Brooks

Abstract The cell surface molecule Ly-6A/E provides a convenient marker for primitive stem cells in the hematopoietic tissues of both fetal and adult mice. However, previous studies have shown that Ly-6A/E expression by lymphocytes is variable depending on the haplotype of the Ly-6 locus. Therefore, strain-specific variation in Ly-6A/E expression by bone marrow (BM) cells was investigated. The results show that Ly-6a mice have, on average, 50% of the number of BM cells expressing Ly-6A/E relative to that for Ly-6b mice. Furthermore, among the 5% of BM cells that do not express antigens characteristic of mature T, B, myeloid, or erythroid lineages, which include the primitive hematopoietic stem cell compartment, Ly-6a mice have, on average, more than fivefold fewer Ly- 6A/E+ cells relative to that for Ly-6b mice. Isolation of Ly-6A/E- and Ly-6A/E+ cells from mice of both haplotypes showed that, whereas 99% of the marrow repopulating activity (MRA) of C57BL/Ka (Ly-6b) mice could be recovered in the Ly-6A/E+ fraction, only about 25% of the MRA of BALB/c (Ly-6a) was recoverable in the same population. On a per-cell basis, the Ly-6A/E+ cells that were isolated from BALB/c mice were essentially equivalent in MRA to those isolated from C57BL/Ka mice. Thus, whereas a large percentage of the hematopoietic stem cells of Ly- 6a mice do not express the Ly-6A/E molecule, the antigen may be used to isolate a subset of stem cells from these mice. These results show that hematopoietic stem cell phenotype can vary between mouse strains and imply that caution should be exercised in the identification of human stem cell antigens such as CD34, because a similar variability may occur between individual humans. To further explore the influence of Ly- 6 haplotype on Ly-6A/E expression by specific cell subsets, lymph-node lymphocytes from a panel of mouse strains were analyzed by multiparameter flow cytometry for correlated expression of Ly-6A/E, CD4, and CD8. All Ly-6a strains examined had less than 20% Ly-6A/E+ cells, and those cells were predominantly CD8+ T lymphocytes. In contrast, the Ly-6b strains had greater than 30% Ly-6A/E+ cells, and those cells included CD4+, CD8+, and B lymphocytes.


2021 ◽  
Vol 10 (5) ◽  
pp. 1113
Author(s):  
Kinga Musiał ◽  
Krzysztof Kałwak ◽  
Danuta Zwolińska

Background: Knowledge about the impact of allogeneic hematopoietic stem cell transplantation (alloHSCT) on renal function in children is still limited. Objectives: The aim of the study was to evaluate kidney function in children undergoing alloHSCT, with special focus on differences between patients transplanted due to oncological and non-oncological indications. Materials and Methods: The data of 135 children undergoing alloHSCT were analyzed retrospectively. The serum creatinine and estimated glomerular filtration rate (eGFR) values were estimated before transplantation at 24 h; 1, 2, 3, 4 and 8 weeks; and 3 and 6 months after alloHSCT. Then, acute kidney injury (AKI) incidence was assessed. Results: Oncological children presented with higher eGFR values and more frequent hyperfiltration rates than non-oncological children before alloHSCT and until the 4th week after transplantation. The eGFR levels rose significantly after alloHSCT, returned to pre-transplant records after 2–3 weeks, and decreased gradually until the 6th month. AKI incidence was comparable in oncological and non-oncological patients. Conclusions: Children undergoing alloHSCT due to oncological and non-oncological reasons demonstrate the same risk of AKI, but oncological patients may be more prone to sustained renal injury. Serum creatinine and eGFR seem to be insufficient tools to assess kidney function in the early post-alloHSCT period, when hyperfiltration prevails, yet they reveal significant differences in long-term observation.


Sign in / Sign up

Export Citation Format

Share Document