Generating of Human CD4+ and CD8+ T Lymphocytes toward NY-ESO-1 by T Cell Receptor (TCR) Modification and Transduction for Adoptive TCR Gene-Transfer

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3533-3533
Author(s):  
Holger Krönig ◽  
Kathrin Hofer ◽  
Daniel Sommermeyer ◽  
Christian Peschel ◽  
Wolfgang Uckert ◽  
...  

Abstract The Cancer Testis (CT) antigen NY-ESO-1 is one of the most immunogenic cancer antigens eliciting strong humoral and cellular immune responses in tumor patients and therefore it is a promising candidate antigen for successful adoptive T cell transfer. The aim of our studies is the transfer of autologous T cells re-directed towards CT antigens by T cell receptor (TCR) gene transfer. The first precondition for genetic transfer of CT-Ag-specific TCRs is the availability of tumor-reactive CD4+ and CD8+ T cell clones that express a CT-Ag-specific TCR. Therefore, we generated the autologous CD8+ T cell clone ThP2 through stimulating HLA-A2.1− PBMCs with autologous HLA-A2+DCs loaded with synthetic NY-ESO-1157–165. After two restimulations, FACS-sorting and cloning, the T cell line specifically recognized the NY-ESO-1157–165 peptide and also specifically lysed NY-ESO-1157–165 expressing tumor cells. In addition, we generated NY-ESO-1 specific T helper1 clones from HLA-DR1+ and HLA-DR4+ healthy donors by stimulation of CD4+ T cells with autologous dendritic cells (DC) pulsed with the NY-ESO-187–111 peptide. The specificity of CD4+ T helper cell clones was determined by proliferation assays and IFN gamma ELISPOT through screening with the NY-ESO-187–111 peptide. By limiting dilution of the NYESO- 1-specific T cell populations we succeeded to isolate CD4+ T cell clones, which recognized NY-ESO-1-pulsed target cells and DCs pulsed with NY-ESO-1 protein. The second precondition for TCR gene transfer is the availability of efficient vector systems. Using vectors based upon mouse myelo-proliferative sarcoma virus (MPSV), it was possible to achieve a high transgene expression in the TCR-transduced T cells. Therefore, we cloned the TCR of the HL-A2-restricted NY-ESO-1-specific CTL clone ThP2 in the retroviral vector and documented the correct expression of the TCR-chains using peptide/HLA-multimers following retroviral transduction of peripheral PBMCs. Moreover, the NY-ESO-1 specific lysis of HLA-A2+ NY-ESO-1+ tumor cell lines after transduction in primary T cells was as well effective as the primary T cell clone. Because the expression of naive transgenic T cell receptors in recipient human T cells is often insufficient to achieve highly reactive T cell bulks we modified the TCR of the ThP2 CTL clone by, murinisation, codon optimalization or by introducing cysteins into the constant regions. Afterwards we compared the expression efficiency of the three different modifications on naive T cells by tetramer-staining. We were able to show that codon optimalization leads to an increase in the expression levels of the transgenic TCRs in human CD8+ T cells. The next step is the development of T cell transfer regiments, which are based on class-II-restricted TCR-transduced T cells.

1991 ◽  
Vol 173 (5) ◽  
pp. 1091-1097 ◽  
Author(s):  
N Nakano ◽  
H Kikutani ◽  
H Nishimoto ◽  
T Kishimoto

Five islet-reactive T cell clones were established from islet-infiltrating T cells of non-obese diabetic (NOD) mice. All clones expressed CD4, but not CD8, and responded to islet cells from various strains of mice in the context of I-ANOD. They could induce insulitis when transferred into disease-resistant I-E+ transgenic NOD mice. The T cell receptor (TCR) sequences utilized by the clones were determined. Their usage of TCR V and J segments was not restricted but was rather diverse. One of the clones utilized V beta 16. The expression of V beta 16 was significantly reduced in I-E+ transgenic NOD, suggesting the possibility that the islet-reactive T cell clone expressing V beta 16 may be deleted or inactivated by I-E molecules. This clone might be one of the candidates that triggers insulitis.


1994 ◽  
Vol 180 (3) ◽  
pp. 1171-1176 ◽  
Author(s):  
P Dellabona ◽  
E Padovan ◽  
G Casorati ◽  
M Brockhaus ◽  
A Lanzavecchia

The T cell receptor (TCR)-alpha/beta CD4-8- (double negative, DN) T cell subset is characterized by an oligoclonal repertoire and a restricted V gene usage. By immunizing mice with a DN T cell clone we generated two monoclonal antibodies (mAbs) against V alpha 24 and V beta 11, which have been reported to be preferentially expressed in DN T cells. Using these antibodies, we could investigate the expression and pairing of these V alpha and V beta gene products among different T cell subsets. V alpha 24 is rarely expressed among CD4+ and especially CD8+ T cells. In these cases it is rearranged to different J alpha segments, carries N nucleotides, and pairs with different V beta. Remarkably, V alpha 24 is frequently expressed among DN T cells and is always present as an invariant rearrangement with J alpha Q, without N region diversity. This invariant V alpha 24 chain is always paired to V beta 11. This unique V alpha 24-J alpha Q/V beta 11 TCR was found in expanded DN clones from all the individuals tested. These findings suggest that the frequent occurrence of cells carrying this invariant TCR is due to peripheral expansion of rare clones after recognition of a nonpolymorphic ligand.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4226-4226
Author(s):  
Hakim Echchannaoui ◽  
Jutta Petschenka ◽  
Edite Antunes ◽  
Matthias Theobald

Abstract Abstract 4226 Several studies have demonstrated the clinical efficacy of adoptive T cell therapy for targeting cancer. Using HLA-A2.1 transgenic mice, we have demonstrated the feasibility of T-cell receptor (TCR) gene transfer into T cells to circumvent self-tolerance to the widely expressed human p53(264–272) tumor-associated antigen and developed approaches to generate high-affinity CD8-independent TCR. A safety concern of TCR gene transfer is the pairing of endogenous and introduced TCR chains resulting in the potential generation of self-reactive T cells (off-target autoimmunity). Several strategies to favor matched TCR chains pairing and thus enhancing TCR cell surface expression, including optimization of TCR encoding nucleotide sequences, introduction of an additional inter-chain disulfide bond between the TCR α and β chain constant domains, coexpression of both TCR α and β encoding-genes using self-cleaving 2A virus peptide-based retroviral vectors have been applied. However, adoptive transfer of mouse T cells transduced with modified p53-specific TCRs into p53-deficient humanized (A2Kb) mice was inducing lethal autoimmunity due to the formation of self-reactive TCRs infiltrating vital organs, such as spleen, liver and bone marrow. Therefore, an optimized single chain (sc) p53-specific TCR was engineered to avoid the formation of mismatched TCR heterodimers. The safety and therapeutic efficiency of this approach were evaluated in humanized mouse models of adoptive T cell transfer and successfully demonstrated that optimized p53-specific scTCR-redirected T cells (i) do not induce OFF-target autoimmunity and (ii) mediate antitumor reactivity. Importantly, because the expression of p53 antigen on normal tissues raises the concern of potential on-target toxicity, we performed adoptive T cell transfer experiments in humanized mice expressing the Human p53 protein (Hupki mice) and did not observe any sign of TCR gene transfer-mediated GvHD in this model. In conclusion, these mouse studies suggest that the optimized p53(264–272)-specific scTCR could represent a safe and efficient approach for TCR-based gene therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3364-3364
Author(s):  
Falk Heidenreich ◽  
Elke Ruecker-Braun ◽  
Juliane S. Stickel ◽  
Anne Eugster ◽  
Denise Kühn ◽  
...  

Abstract Background Immunotherapy for CLL with new antibodies or T-cells with modified TCR relies on attractive targets. ROR1 is such a promising target since it is highly overexpressed in CLL. Chimeric antigen receptor engineered T cells and antibodies directed against the extracellular part of ROR1 have already been developed and tested in vitro or in animal models, but still there is no MHC-class I presented peptide serving as target structure for CD8+ T cells (with or without a genetically modified T cell receptor) available. Aim The aim of this study was (1) to identify an immunogenic MHC-class I presented ROR1 peptide, (2) to generate respective ROR1 peptide specific CD8+ T cell clones, and (3) to analyze the nucleotide sequence of the CDR3 region of the expressed alpha and beta T cell receptor chain. Results In mass spectrometric-based analyses of the HLA-ligandome a HLA-B*07 presented ROR1 peptide was identified in primary CLL cells of two patients. Six T cell clones specific for this particular ROR1-peptide were generated from single CD8+ T cells from 2 healthy individuals with 3 T cell clones generated from each donor. Functionality and specificity of those T cell clones were tested in cytotoxicity assays. All 6 dextramer+ CD8+ T cell clones lysed peptide loaded and HLA-B*07+ transduced K562 cells (kindly provided by Lorenz Jahn, [Jahn et al., Blood, 2015 Feb 5;125(6):949-58]). Two selected clones (XD8 and XB6) were tested for their cytotoxic potential against 2 ROR1+ HLA-B*07+ tumor cell lines (with the ROR1 peptide identified by mass spectrometry for both of them) and against 2 primary CLL cell samples. Tested clones showed a significant lysis of the respective target cells. CDR3 regions of the alpha and beta T cell receptor chain were sequenced on a single cell level. The CDR3 alpha region from each of the 3 ROR1 specific T cell clones from donor A showed some similarities to T cell clones derived from donor B (Table 1). Conclusion For the first time a MHC-class I presented ROR1 peptide antigen is reported. ROR1 positive CLL cells can be targeted by specific HLA-B*07 restricted CTLs. Respective CD8+ T cell clones with anti-leukemic activity from 2 donors share some amino acid motifs of the CDR3 alpha and beta regions. In conclusion, this information provides the possibility of generating ROR1 specific CD8+ T cells with genetically modified T cell receptors for immunotherapy and for tracking those cells after administration with next generation sequencing in peripheral blood samples of patients. Furthermore, data suggest the existence of public TCR motifs in leukemia antigen specific CTLs, which needs to be proven in follow-up experiments with larger cohorts of donors and patients. Finally, the presented strategy to identify leukemia specific peptide antigens for CD8+ T cells might be an attractive method for similar projects. Table 1 Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Table 1. Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Disclosures Middeke: Sanofi: Honoraria. Schetelig:Sanofi: Honoraria.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 823-823
Author(s):  
Marleen M Van Loenen ◽  
Renate de Boer ◽  
Gerdien L Volbeda ◽  
Avital L Amir ◽  
Renate S. Hagedoorn ◽  
...  

Abstract T cell receptor transfer to engineer tumor specific T cells is being explored as a strategy for adoptive immunotherapy. By retroviral introduction of T cell receptors (TCRs), large numbers of T cells with defined antigen specificity can be obtained. The in vivo efficacy of adoptively transferred TCR engineered T cells has been demonstrated in mouse studies and recently the first clinical trial with TCR engineered T cells was performed in melanoma patients. However, a potential drawback of TCR gene transfer is the formation of mixed TCR dimers. Chains of the introduced TCR can pair with the endogenous TCR chains, resulting in unknown specificities, and potentially in harmful reactivity against patient HLA molecules. We investigated whether TCR gene transfer leads to the generation of new detrimental reactivities by creating T cells that expressed mixed TCR dimers. To be able to discriminate between the antigen specificity of the mixed TCR dimers and the introduced as well as the endogenous TCR, we transduced mono-specific T cells with seven different antigen specific TCRs. As mono-specific T cells we used CMV-pp50 specific HLA-A1 restricted T cells. The transduced T cells were analyzed for newly acquired specificities against a large HLA-typed EBV-LCL panel covering almost all HLA class I and II molecules. We transduced several polyclonal virus specific T cell populations with the seven different antigen specific TCRs, and showed that in all T cell populations at least one of the seven TCR-transduced populations acquired new alloreactivities. Furthermore, by randomly combining TCR alpha and beta chains derived from different T cell clones we created 60 mixed TCR dimers of which 17 acquired alloreactivity. These results indicate that recombination of the introduced TCR chains with the endogenous TCR chains frequently gives rise to new allospecificities. To ascertain that the newly acquired alloreactivities were exerted by mixed TCR dimers, we introduced only TCR alpha or beta chains into CMV-pp50 specific monoclonal T cells, and demonstrated for example, that the introduction of a CMV pp65 specific TCR alpha chain led to a newly acquired reactivity that was HLA B58 restricted. The introduction of only the beta chain of a minor histocompatibility antigen (mHag) HA-1 specific TCR led to a newly acquired HLA B52 specific reactivity. Furthermore, we analyzed whether mixed TCR dimers consisting of conserved TCRs with the same specificity could acquire new harmful reactivity. We recombined mHag HA-2 specific TCR alpha and beta chains from 4 different T cell clones. Of the 12 mixed TCR dimers, a combination of the mHag HA-2 specific TCR alpha chain derived from the HA2.6 T cell clone with the mHag HA-2 specific beta chain of clone HA2.19 resulted in alloreactivity that was HLA DQ3 restricted. These results indicate that each recombination of TCR chains after TCR gene transfer can potentially result in a harmful new reactivity. In conclusion, mixed TCR dimers due to pairing of endogenous TCR chains with introduced TCR chains acquire potentially dangerous reactivities, both class I and class II restricted. To limit the chance of generating self- or alloreactive T cells, TCRs may be constructed allowing selective pairing of the TCR alpha chain with the corresponding TCR beta chain. Alternatively, we propose to use virus specific T cells as host cells for TCR gene transfer. Since they consist of a restricted TCR repertoire, the number of different chimeric TCRs formed will be limited. By introducing into these T cells as controls only the alpha or beta chain of the TCR of interest, the reactivity of these T cells and harmful reactivities of the mixed TCR dimers can be tested against different patient derived cell types.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1350-1363 ◽  
Author(s):  
Y. Collette ◽  
A. Benziane ◽  
D. Razanajaona ◽  
D. Olive

CD28 is a major coreceptor that regulates cell proliferation, anergy, and viability of T cells. The negative selection by T-cell receptor (TCR)-induced cell death of immature thymocytes as well as of activated human antigen-specific T-cell clone, requires a costimulatory signal that can be provided by CD28. Conversely, CD28-mediated signals increase expression of Bcl-XL, a survival gene, and promote survival of naive T cells cultured in the absence of antigen or costimulation. Because CD28 appears to both protect from, or induce T-cell death, one important question is to define the activation and cellular parameters that dictate the differential role of CD28 in T-cell apoptosis. Here, we compared different CD28 ligands for their ability to regulate TCR-induced cell death of a murine T-cell hybridoma. In these cells, TCR triggering induced expression of Fas and FasL, and cell death was prevented by anti-Fas blocking monoclonal antibody (MoAb). When provided as a costimulus, both CD28 MoAb and the B7.1 and B7.2 counter receptors downregulated, yet did not completely abolish T-cell receptor–induced apoptosis. This CD28 cosignal resulted in both upregulation of Bcl-XL and prevention of FasL expression. In marked contrast, when given as a single signal, CD28 MoAb or B7.1 and B7.2 induced FasL expression and resulted in T-cell death by apoptosis, which was dependent on the level of CD28 ligation. Furthermore, triggering of CD28 upregulated FasL and induced a marked T-cell death of previously activated normal peripheral T cells. Our results identify Fas and FasL as crucial targets of CD28 in T-cell death regulation and show that within the same cell population, depending on its engagement as a single signal or as a costimulus together with the TCR, CD28 can either induce a dose-dependent death signal or protect from cell death, respectively. These data provide important insights into the role of CD28 in T-cell homeostasis and its possible implication in neoplastic disorders. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1350-1363 ◽  
Author(s):  
Y. Collette ◽  
A. Benziane ◽  
D. Razanajaona ◽  
D. Olive

Abstract CD28 is a major coreceptor that regulates cell proliferation, anergy, and viability of T cells. The negative selection by T-cell receptor (TCR)-induced cell death of immature thymocytes as well as of activated human antigen-specific T-cell clone, requires a costimulatory signal that can be provided by CD28. Conversely, CD28-mediated signals increase expression of Bcl-XL, a survival gene, and promote survival of naive T cells cultured in the absence of antigen or costimulation. Because CD28 appears to both protect from, or induce T-cell death, one important question is to define the activation and cellular parameters that dictate the differential role of CD28 in T-cell apoptosis. Here, we compared different CD28 ligands for their ability to regulate TCR-induced cell death of a murine T-cell hybridoma. In these cells, TCR triggering induced expression of Fas and FasL, and cell death was prevented by anti-Fas blocking monoclonal antibody (MoAb). When provided as a costimulus, both CD28 MoAb and the B7.1 and B7.2 counter receptors downregulated, yet did not completely abolish T-cell receptor–induced apoptosis. This CD28 cosignal resulted in both upregulation of Bcl-XL and prevention of FasL expression. In marked contrast, when given as a single signal, CD28 MoAb or B7.1 and B7.2 induced FasL expression and resulted in T-cell death by apoptosis, which was dependent on the level of CD28 ligation. Furthermore, triggering of CD28 upregulated FasL and induced a marked T-cell death of previously activated normal peripheral T cells. Our results identify Fas and FasL as crucial targets of CD28 in T-cell death regulation and show that within the same cell population, depending on its engagement as a single signal or as a costimulus together with the TCR, CD28 can either induce a dose-dependent death signal or protect from cell death, respectively. These data provide important insights into the role of CD28 in T-cell homeostasis and its possible implication in neoplastic disorders. © 1998 by The American Society of Hematology.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1249-1249
Author(s):  
Veronika Foltankova ◽  
Eva Matejkova ◽  
Milan Bartos ◽  
Milos Dendis ◽  
Dana Novotna ◽  
...  

Abstract Graft-verus-leukemia (GVL) effect in hematopoietic stem cell transplantation (HSCT) is usually complicated by the alloreactivity of donor T cells which leads to acute graft-versus-host (GVH) disease. GVL and GVH reactions are proved to be mediated by different T cell clones. The objective of this study was to identify and characterize T cells clones with specific antileukemia activity without mediating GVHD. We have performed primary mixed leukocyte reaction (MLR) using patient non-leukemic irradiated peripherial blood mononuclear cells (PBMC) as stimulators and donor PBMC as responders. To prepare GVL specific T cells, activated alloreactive T cells were first selectively depleted with an anti-CD25 immunotoxin (Michalek, et al. PNAS2003, 100: 1180–4). Allodepleted T cells were then stimulated in secondary MLR using irradiated leukemia cells from the same patient. Activated leukemia-reactive cells were purified by immunomagnetic selection or by FACS based on INF-γ or CD25 expression, respectively. Clonotypic assay was used for identification of individual leukemia-specific T cell clones (Michalek, et al. Lancet2003, 361: 1183–5; Michalek, et al. J Immunol2007, 178: 6789– 5). This highly sensitive assay is based on detailed analysis of T cell receptor β VDJ unique sequence (TCRB-VDJ). mRNA was extracted from sortred activated cells and cDNA synthetized by anchored reverse transcription. Target TCRB-VDJ gene sequence was amplified by anchor PCR and used to transform bacteria. Bacterial colonies were picked for plasmid isolation and subsequent direct automated sequencing of the TCRBVDJ sequences. We assume that the frequency of particular TCRB-VDJ sequences among bacterial clones after transformation are proportional to the frequency of those sequences in the original population of T cells activated by GVH or GVL reaction. We investigated the presence of individual antileukemic T cell clones in patients with acute myeloid leukemia (AML) and chronic lymphatic leukemia (CLL), and defined them by the TCRB-VDJ unique sequence. The sequences that occured in more than 10% bacterial colonies are likely to represent the most immunodominant clones. Populations of antileukemic T cell clones were oligoclonal, i.e. we observed limited number of individual immunodominat clones which plays important role in GVL reaction. In first CLL patient who had undergone HSCT, six antileukemic T cell clones were identified, four of them are considered to be immunodominant. In second CLL patient after HSCT, only one highly immunodominat autileukemic T cell clone was observed. This specific clone was further monitored by quantitative real-time PCR in patients peripherial blood.


Sign in / Sign up

Export Citation Format

Share Document