Study On Mechanism of Bone Marrow Mesenchymal Stem Cell in Treating Patients with Rheumatoid Arthritis.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4486-4486
Author(s):  
Zhenhua Qiao ◽  
Lihui Ma

Abstract Abstract 4486 Objective To explore mechanism of Mesenchymal stem cells in treating Rheumatoid arthritis. Methods (1) MSCs were isolated from Bone marrow samples of Rheumatoid arthritis(RA)patients and purified by density gradient centrifagation and cultured in vitro. Morphology, immunophenotype, and proliferative property of bMSC and colony forming unit-fibroblast (CFU-F) were measured and analyzed. (2) In an in vitro co-culture system, MSCs were observed to modulate proliferation,activation, and maturation of T and B lymphocytes of Rheumatoid arthritis(RA)patients. The expression of IL-1?ATNF-a?ATGF-β were obviously changed.(3) Bone marrow- derived BMSCs of wistar rats were isolated and cultured in vitro routinely and the fourth passage as taken for identification of specific surface antigens by flowcytometry, then were labled with 5- BrdU in vitro. The model of collagen-induced arthritis (CIA) rats were established. 5- BrdU labled BMSCs were implanted through tail vein to model rats. At 4 weeks after BMSCs transplantation, immunohistochemical examinations were used to investigate BMSCs aggregate around the knee joints.and identify the contribution of bone marrow– derived cells to joints damage repair. Results (1) The culture expanded cells from RA patients presented a typical fibroblast-like morphology. Cells were positive for SH2(CD105),CD71,and CD44, but negative for CD45.Their proliferative capacity and CFU-F number were similar to those of bMSCs from healthy donors. (2) MSCs significantly inhibited T,B cell proliferation. MSCs also could down-regulating the levels of IL-1, TNF and up-regulating TGF-β. (3) Flow cytometry showed that BMSCs expressed CD44, CD71and CD105, but no CD45,CD34. At 4 weeks after the cells transplantation, the implanted cells were detected in the damaged joints of the model rats, which is not founded in normal knee joints of the rats'.and at same time there are more OPG(osteoprotegerin) positive. Conclusion (1) In the aspect of morphology, immuno -phenotypen, proliferative property and colony forming unit-fibroblast (CFU-F),MSCs from bone marrow of RA patients are not different from those of MSCs isolated from bone marrow of normal donors,MSCs from the bone marrow of RA patients have the potentiality in clinical application.(2) Human bone marrow MSCs inhibited Tcell and Bcell activation and proliferation in patients with RA in vitro. And these immuno –modulatory effects were not MHC-restricted. (3) bone marrow mesenchymal stem cells prevents tissue damage in arthritis. Allogeneic MSCs can engraft at sites of tissue damage,and prepair damage. That provided positive results for developing effective therapy for Rheumatoid arthritis. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2551-2551
Author(s):  
Peter P. Ruvolo ◽  
Rui-yu Wang ◽  
Vivian R Ruvolo ◽  
Rodrigo Jacamo ◽  
Teresa McQueen ◽  
...  

Abstract Glycogen Synthase Kinase 3β (GSK3β) is a key regulator of cell metabolism, proliferation, survival, and differentiation. The kinase has abundant substrates including many proteins in the canonical WNT pathway. Considering that GSK3β phosphorylation of many pro-survival proteins result in their degradation (e.g MYC, MCL-1), it is not surprising that GSK3β activation by stress challenge leads to cell cycle arrest and/or apoptosis. GSK3β is negatively regulated by serine 9 phosphorylation mediated by Protein Kinase B (AKT). Since AKT activation supports survival of AML cells and inactivation of GSK3β could suppress stress signaling events, we hypothesize that serine 9 phosphorylation of GSK3β (p-GSK3β ) will be detrimental for AML patients. In the current study, we analyzed GSK3β expression by Reverse Phase Protein Analysis (RPPA) in a cohort of 511 AML patients. GSK3β expression was correlated with patient survival data and disease characteristics such as French-American-British (FAB) classification, cytogenetics, and mutational status. High levels of p-GSK3β were found to correlate with adverse outcome for survival and complete remission duration (CR) in patients with intermediate cytogenetics but not in those with unfavorable cytogenetics. CR was only 45 weeks in the third of patients with highest p-GSK3β levels compared to 98 weeks for patients with low levels (p = 0.008; N = 121). Even intermediate cytogenetic patients with FLT3 mutation fared better when p-GSK3β levels were lower (50 versus 24 weeks; p = 0.009; N = 35). Expression of GSK3β and its phosphorylated form was compared with expression of 229 other proteins using RPPA in the AML patient cohort. Consistent with p-GSK3β as an indicator of AKT activation, RPPA revealed that p-GSK3β is positively correlated with phosphorylation of AKT (S473), BAD (S136), and P70S6K. In addition, p-GSK3β negatively correlated with FOXO3A (which is degraded after phosphorylation by AKT). Bone marrow mesenchymal stem cells (BM MSCs) are a critical component of the leukemic microenvironment but how these cells modulate the survival of leukemia cells is not clear. RPPA analysis was performed on BM MSC from healthy donor (N = 71) and BM MSCs from AML patients (N = 106). Interestingly, both total and phosphorylated GSK3 were found to be elevated in the AML samples suggesting that AKT is also activated in the leukemic MSCs. In vitro models of the BM microenvironment suggest that the AKT pathway is activated in both the leukemic and supporting stromal cells so this finding is consistent with these models (Konopleva and Andreeff, Curr Drug Targets. 2007; 8: 685). Unlike in AML blast cells, FOXO3A was not correlated with GSK3β phosphorylation in the MSCs. Examination of miRs in normal versus AML BM MSCs using microarray analysis and validated by qRT-PCR indicate that miR-21 is elevated in the MSC of the normal individuals. As miR-21 is suppressed by FOXO3A, this finding supports the notion that AKT is active in the AML BM MSCs but FOXO3A may not be functional. This possibility is plausible as induction of FOXO3A results in apoptosis in MSC (Djouad Cloning Stem Cells. 2009; 11:407). Conclusion These findings suggest that AKT mediated phosphorylation of GSK3β may be detrimental to AML patients and p-GSK3β may serve as an important prognostic factor for at least a subset of AML patients. The results also suggest that activation of AKT can occur in both the malignant cells and MSC cells in the leukemic microenvironment. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Author(s):  
Melo Ocarino Natalia de ◽  
Silvia Silva Santos ◽  
Lorena Rocha ◽  
Juneo Freitas ◽  
Reis Amanda Maria Sena ◽  
...  

2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 111-116
Author(s):  
Rafal Hussamildeen Abdullah ◽  
◽  
Shahlla Mahdi Salih ◽  
Nahi Yosef Yaseen ◽  
Ahmed Majeed Al-Shammari ◽  
...  

2017 ◽  
Vol 13 (4) ◽  
pp. 482-490 ◽  
Author(s):  
Guilherme Galvão dos Santos ◽  
Araceli Aparecida Hastreiter ◽  
Talita Sartori ◽  
Primavera Borelli ◽  
Ricardo Ambrósio Fock

2012 ◽  
Vol 7 (6) ◽  
pp. 757-767 ◽  
Author(s):  
Sarah L Boddy ◽  
Wei Chen ◽  
Ricardo Romero-Guevara ◽  
Lucksy Kottam ◽  
Illaria Bellantuono ◽  
...  

2017 ◽  
Vol 15 (5) ◽  
pp. 2551-2559 ◽  
Author(s):  
Wei-Ping Zheng ◽  
Bo-Ya Zhang ◽  
Zhong-Yang Shen ◽  
Ming-Li Yin ◽  
Yi Cao ◽  
...  

2007 ◽  
Vol 34 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Sang-Jun Jeon ◽  
Kazuo Oshima ◽  
Stefan Heller ◽  
Albert S.B. Edge

Sign in / Sign up

Export Citation Format

Share Document