Pharmacologic Restoration of PP2A Activity and Interference with the SET-PP2A Interplay by FTY720 and Its Non-Immunosuppressive Derivative as a Novel and Efficient Therapy for Ph-Negative Myeloproliferative Disorders

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 775-775
Author(s):  
Joshua J Oaks ◽  
A. Mukhopadhyay ◽  
Ramasamy Santhanam ◽  
S. A Saddoughi ◽  
Christopher Walker ◽  
...  

Abstract Abstract 775 We have shown (Oaks JJ et al. ASH 2009) that the tumor suppressor Protein Phosphatase 2A (PP2A) is functionally inactivated by Jak2V617F in cell line models of Jak2V617F myeloproliferative disorders (MPD) and Jak2V617F-transduced primary mouse bone marrow cells. Inhibition of Jak2 (600 nM Jak Inhibitor I; 50 μM AG490; 10h) or treatment with the PP2A activator FTY720 (2.5μM, 24 hours) restored PP2A activity that caused loss of Jak2V617F protein/activity, impaired Jak2V617F-driven colony formation, and induced apoptosis of Jak2V617F+ but not normal myeloid cells. Notably, FTY720 is a sphingosine analog suggested by the FDA to treat patients with Multiple Sclerosis due to its immunosuppressive activity when phosphorylated by sphingosine kinase 2 (SPHK2). Here we show that FTY720 treatment of CD34+ primary bone marrow cells from JakV617F+ PV patients (n=3) also rescued PP2A activity, induced Jak2 downregulation and significantly impaired cytokine-dependent clonogenic potential. Thus, FTY720 could be used as an alternative to Jak2 inhibitors, as in vitro and in animal assays showed that FTY720 (2.5μM) is not toxic against normal human myeloid progenitors while decreasing survival of CD34+ progenitors from MPD patients. To find out whether FTY720 uses the same mechanism to exert its immunosuppressive and anti-leukemic activities, we determined if the conversion of FTY720 into its phosphorylated form is important for rescuing PP2A activity in Jak2V617F-expressing cells. Impaired FTY720-P conversion by exposure to the SPHK inhibitor dimethylsphingosine (2.5μM, 6 hours) did not affect the ability of FTY720 to activate PP2A. Also, a synthetically phosphorylated FTY720 (FTY720-P, 2.5μM, 6 hours) was unable to activate PP2A or exert any anti-leukemic activity, suggesting that the anti-proliferative and pro-apoptotic effects of FTY720 are independent of its phosphorylation and interaction with the S1PR1 receptor. We found that activation of S1PR1 through the specific agonist SEW2871 (10μM), FTY720-P (2.5μM), or sphingosine-1-phosphate (100nM) markedly suppresses (~60% inhibition) rather than activates PP2A in normal myeloid progenitors. As expected, knockdown of S1PR1 had no effect on FTY720-mediated PP2A activation in Jak2V617F-transformed cells. Mechanistically we found that Jak2V617F and PP2Ac were found in a ternary complex with the PP2A inhibitor SET. SET knockdown by shRNA restored PP2A activity in Jak2V617F+ Ba/F3 cells to levels similar to those found in non-transformed cells, and led to an 84% decrease in Jak2V617F+-driven colony formation. In addition, co-immunoprecipitation assays revealed that FTY720 (10μM) disrupts Jak2-PP2A, PP2A-SET and Jak2-SET interactions, suggesting that SET may be the target of FTY720. Consistently, affinity chromatography showed that FTY720 efficiently interferes with the ability of C6-ceramide (10μM) to bind SET as the amount of SET eluted from the biotin-labeled C6-ceramide was significantly reduced by exposure of the cell lysate to FTY720. As well, lentiviral-mediated expression of wild type or K209D SET mutant (ceramide binding deficient) in Ba/F3 cells impaired PP2A activity (≥80% decrease), which could be totally rescued by FTY720 only in cells transduced with wild type but not K209D SET. The formal demonstration that FTY720 activates PP2A by displacing SET came when we found SET in anti-NBD immunoprecipitates from Jak2V617F-expressing Ba/F3 cells treated with FTY720-phenoxy-NBD (10μM; 30 min). Together, our data show that FTY720 has the potential to be an effective therapeutic agent for MPD patients by virtue of its low toxicity and ability to activate PP2A by displacing SET; however, FTY720 still retains the ability to become phosphorylated and inhibit, at least in part, PP2A. Thus, we developed non-phosphorylatable FTY720 derivatives and assessed them for their ability to: activate PP2A; induce downregulation/inactivation of targeted kinases (e.g. Jak2, BCR-ABL1, Akt); act as anti-proliferative and pro-apoptotic agent to leukemic but not normal myeloid/lymphoid progenitors; do not interact with S1PR1; and show no in vivo effects on B220+/CD19+ and CD4 or CD8 cellular compartments. These FTY720 derivatives were found to be not immunosuppressive but able to mirror FTY720 in terms of inducing Jak2V617F downregulation and cell killing while retaining the parent compound's minimal toxicity towards untransformed cells. Disclosures: Verstovsek: Incyte Corporation: Research Funding.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3548-3548
Author(s):  
Joshua J. Oaks ◽  
Ramasamy Santhanam ◽  
Roger Briesewitz ◽  
Danilo Perrotti

Abstract Polycythemia vera (PV) is a myeloproliferative disorder (MPD) caused by a valine to phenylalanine mutation in the inhibitory JH2 “pseudokinase” domain of the signaling protein Janus Kinase 2 (Jak2). While Jak2 has several known regulators (e.g. SOCS1, SOCS3, PP2A, and SHP-1), the role played by these signaling molecules in the development of PV is still largely unclear. One of these regulators, the tumor suppressor phosphatase PP2A, has been found functionally inactivated in different hematologic myeloid and lymphoid malignancies characterized by the expression of constitutively activated oncogenic tyrosine kinases (e.g. BCR/ABL). To investigate the role of PP2A in the pathogenesis of Jak2 V617F+ MPDs and the potential therapeutic relevance of PP2A activating drugs (e.g. FTY720), we determined the effects of wild type and V617F Jak2 expression on PP2A activity and assessed the molecular and biological effects of FTY720 in hematopoietic precursor cell lines and/or primary lineage-negative bone marrow cells engineered to expressed either wild type or V617F Jak2 protein. Herein we report that PP2A activity is significantly reduced by about 82% and 78% (P< 0.01) in mJak2 V617F-transduced growth factor-dependent and erythropoietin receptor-expressing 32Dcl3 (32D-EPO) and Ba/F3 cells, respectively, compared to MigR1-transduced controls. Furthermore, addition of the PP2A activator FTY720 (2.5μM) for 10 hours restored PP2A activity to 66% and 75% respectively compared to that of MigR1 controls. Mechanistically, we demonstrated that inactivation of PP2A was due to constitutive Jak2 activity. In fact, treatment of V617F Jak2-expressing cells with Jak inhibitor I (1μM; 10 hours) restored PP2A activity to 80% of controls in 32Dcl3 cells, while 600nM was sufficient to restore activity to 108% of controls in Ba/f3 cells. Likewise, transduction of murine lineage-negative bone marrow cells with wild-type Jak2 produced a 62% reduction in PP2A activity (P<0.01), while expression of the Jak2 V617F mutant produced a 97% reduction (P< 0.01). Moreover, as we previously reported for BCR/ABL, pharmacologic restoration of PP2A activity by treatment of Ba/F3 or 32D-EPO cells with the PP2A activator FTY720 (2.5μM for 10 hours) led to reduced expression and dephosphorylation of wild type and V617F Jak2. This, in turn, resulted in a 60% reduction in the colony forming ability of IL-3 cultured cells overexpressing wild type Jak2, while a 94% suppression of colony formation was evident in Jak2 V617-expressing cells maintained in the absence of cytokines. Moreover, addition of IL-3 to the FTY720-containing semisolid medium restored viability to levels similar to those of FTY720-treated wild type Jak2-expressing cells (70% suppression of colony formation upon treatment), indicating that restoration of PP2A activity counteracts cytokine-independent pathways triggered by the V617F Jak2 mutated tyrosine kinase. Altogether, these results suggest that inactivation of PP2A is essential for Jak2 (V617F mutant included) -driven cell/proliferation and survival and that pharmacologic activation of PP2A might represent a potential avenue for treatment of PV and, perhaps, of other MPDs characterized by the expression of a mutated Jak2 kinase.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4180-4180
Author(s):  
H. Leighton Grimes ◽  
Shane R. Horman

Abstract The generation of mature myeloid lineage cells from hematopoietic stem cells (HSCs) requires a precise synergy between cytokine signaling and lineage-specific transcription factors. Gfi1 (Growth Factor Independence 1) is a zinc finger transcription factor that is necessary for normal myelopoiesis. Gfi1 knockout mice display an abnormal ratio of phenotypic common myeloid progenitors (CMP) and granulocyte/monocyte progenitors (GMP), and such mice completely lack mature neutrophils. In contrast, the Gfi1 heterozygote mouse presents no obvious phenotype. Here we show a gene dosage requirement for Gfi1 in the differentiation of mature myeloid cells. While bone marrow from wild type littermates generates granulocytic, monocytic and mixed methylcellulose colonies, Gfi1 knockout bone marrow cells yield mainly monocytic colonies. In comparison to wild type littermates, Gfi1+/− bone marrow cells generate lower numbers of granulocytic colonies and higher numbers of monocytic colonies. Interestingly, methylcellulose colonies from both Gfi1 knockout mice and heterozygotes display increased serial replating capacity in comparison to wild type littermates. These data suggest that Gfi1 gene dosage may control self renewal and may relate to oncogenic transformation. Activating mutations in K-Ras are common genetic abnormalities in human acute myeloid leukemia and myeloproliferative disease (MPD). However, expression of activated Ras from endogenous regulatory sequences (knock-in) results in an MPD of varying lethality. The severity of the K-Ras-induced MPD depends on unknown genetic modifiers, as lethality is increased in a Balb/c genetic background. Given the effect of Gfi1 gene dosage on serial replating, we have analyzed the effect of Gfi1 gene dosage on the activated Ras knock-in mouse model of MPD. Preliminary data indicate that lowering Gfi1 gene dosage modifies the phenotype of activated Ras MPD by dramatically increasing the number of immature circulating myeloid progenitors. These results reveal that Gfi1 is a modifier of Ras induced disease pathogenesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2531-2531
Author(s):  
Kotaro Shide ◽  
Haruko K. Shimoda ◽  
Takashi Kumano ◽  
Kennosuke Karube ◽  
Takuro Kameda ◽  
...  

Abstract An acquired JAK2 V617F mutation has been detected in up to 90% of patients with polycythemia vera (PV) and in a sizeable proportion of patients with other myeloproliferative disorders such as essential thrombocythemia (ET) and idiopathic myelofibrosis (IMF). However, how a single mutation may be responsible for such different clinical phenotypes is unknown. Mice transplanted with bone marrow cells in which V617F JAK2 was retrovirally expressed developed PV-like features, but not ET or IMF. To address the contribution of this mutation to the pathogenesis of these three MPDs, we generated transgenic mice expressing V617F JAK2 driven by the murine H2Kb promoter. We established two lines. The expression of V617F JAK2 mRNA in bone marrow cells was 0.45 and 1.35 that of endogenous wild-type JAK2 in the two lines. One line showed leukocytosis after 4 months of age, with a predominance of granulocytes. Among 43 mice, examined after 3 months of age, 8 (19%) showed polycythemia and 14 (33%) showed thrombocythemia. Two polycythemia cases also showed thromobocytosis. The other line showed extreme leukocytosis and thromobocytosis at one month of age. The leukocytosis progressed as the animals aged, but the thrombocytosis tended to resolve at 8 months. They showed anemia that means Hb value from 9 to 10 g/dL at one month old. Myeloid cells and megakaryocytes were predominant in the bone marrow of these animals, and splenomegaly with myeloid cell and megakaryocyte invasion was observed. We conclude that in vivo expression of V617F JAK2 results in ET-like, IMF-like, and PV-like disease.


1998 ◽  
Vol 331 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Masafumi YOSHIMURA ◽  
Yoshito IHARA ◽  
Tetsuo NISHIURA ◽  
Yu OKAJIMA ◽  
Megumu OGAWA ◽  
...  

Several sugar structures have been reported to be necessary for haemopoiesis. We analysed the haematological phenotypes of transgenic mice expressing β-1,4 N-acetylglucosaminyltransferase III (GnT-III), which forms bisecting N-acetylglucosamine on asparagine-linked oligosaccharides. In the transgenic mice, the GnT-III activity was elevated in bone marrow, spleen and peripheral blood and in isolated mononuclear cells from these tissues, whereas no activity was found in these tissues of wild-type mice. Stromal cells after long-term cultures of transgenic-derived bone marrow and spleen cells also showed elevated GnT-III activity, compared with an undetectable activity in wild-type stromal cells. As judged by HPLC analysis, lectin blotting and lectin cytotoxicity assay, bisecting GlcNAc residues were increased on both blood cells and stromal cells from bone marrow and spleen in transgenic mice. The transgenic mice displayed spleen atrophy, hypocellular bone marrow and pancytopenia. Bone marrow cells and spleen cells from transgenic mice produced fewer haemopoietic colonies. After lethal irradiation followed by bone marrow transplantation, transgenic recipient mice showed pancytopenia compared with wild-type recipient mice. Bone marrow cells from transgenic donors gave haematological reconstitution at the same level as wild-type donor cells. In addition, non-adherent cell production was decreased in long-term bone marrow cell cultures of transgenic mice. Collectively these results indicate that the stroma-supported haemopoiesis is compromised in transgenic mice expressing GnT-III, providing the first demonstration that the N-glycans have some significant roles in stroma-dependent haemopoiesis.


1985 ◽  
Vol 60 (1) ◽  
pp. 129-136 ◽  
Author(s):  
M. Y. Gordon ◽  
J. A. Hibbin ◽  
L. U. Kearney ◽  
E. C. Gordon-Smith ◽  
J. M. Goldman

Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2148-2159 ◽  
Author(s):  
Harshal H. Nandurkar ◽  
Lorraine Robb ◽  
David Tarlinton ◽  
Louise Barnett ◽  
Frank Köntgen ◽  
...  

Abstract Interleukin-11 (IL-11) is a pleiotropic growth factor with a prominent effect on megakaryopoiesis and thrombopoiesis. The receptor for IL-11 is a heterodimer of the signal transduction unit gp130 and a specific receptor component, the α-chain (IL-11Rα). Two genes potentially encode the IL-11Rα: the IL11Ra and IL11Ra2 genes. The IL11Ra gene is widely expressed in hematopoietic and other organs, whereas the IL11Ra2 gene is restricted to only some strains of mice and its expression is confined to testis, lymph node, and thymus. To investigate the essential actions mediated by the IL-11Rα, we have generated mice with a null mutation of IL11Ra (IL11Ra−/−) by gene targeting. Analysis of IL11Ra expression by Northern blot and reverse transcriptase-polymerase chain reaction, as well as the absence of response of IL11Ra−/− bone marrow cells to IL-11 in hematopoietic assays, further confirmed the null mutation. Compensatory expression of the IL11Ra2 in bone marrow cells was not detected. IL11Ra−/− mice were healthy with normal numbers of peripheral blood white blood cells, hematocrit, and platelets. Bone marrow and spleen contained normal numbers of cells of all hematopoietic lineages, including megakaryocytes. Clonal cultures did not identify any perturbation of granulocyte-macrophage (GM), erythroid, or megakaryocyte progenitors. The number of day-12 colony-forming unit-spleen progenitors were similar in wild-type and IL11Ra−/− mice. The kinetics of recovery of peripheral blood white blood cells, platelets, and bone marrow GM progenitors after treatment with 5-flurouracil were the same in IL11Ra−/− and wild-type mice. Acute hemolytic stress was induced by phenylhydrazine and resulted in a 50% decrease in hematocrit. The recovery of hematocrit was comparable in IL11Ra−/− and wild-type mice. These observations indicate that IL-11 receptor signalling is dispensable for adult hematopoiesis.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2706-2716 ◽  
Author(s):  
Nobuko Uchida ◽  
Zhi Yang ◽  
Jesse Combs ◽  
Olivier Pourquié ◽  
Megan Nguyen ◽  
...  

Abstract The adhesion molecule BEN/SC1/DM-GRASP (BEN) is a marker in the developing chicken nervous system that is also expressed on the surface of embryonic and adult hematopoietic cells such as immature thymocytes, myeloid progenitors, and erythroid progenitors. F84.1 and KG-CAM, two monoclonal antibodies to rat neuronal glycoproteins with similarity to BEN, cross-react with an antigen on rat hematopoietic progenitors, but F84.1 only also recognizes human blood cell progenitors. We have defined the antigen recognized by F84.1 as the hematopoietic cell antigen (HCA). HCA expression was detected on 40% to 70% of CD34+ fetal and adult bone marrow cells and mobilized peripheral blood cells. Precursor cell activity for long-term in vitro bone marrow cell culture was confined to the subset of CD34+ cells that coexpress HCA. HCA is expressed by the most primitive subsets of CD34+ cells, including all rhodamine 123lo, Thy-1+, and CD38−/lo CD34+ adult bone marrow cells. HCA was also detected on myeloid progenitors but not on early B-cell progenitors. We also describe here the cloning and characterization of cDNAs encoding two variants of the human HCA antigen (huHCA-1 and huHCA-2) and of a cDNA clone encoding rat HCA (raHCA). The deduced amino acid sequences of huHCA and raHCA are homologous to that of chicken BEN. Recombinant proteins produced from either human or rat HCA cDNAs were recognized by F84.1, whereas rat HCA but not human HCA was recognized by antirat KG-CAM. Expression of either form of huHCA in CHO cells conferred homophilic adhesion that could be competed with soluble recombinant huHCA-Fc. The molecular cloning of HCA and the availability of recombinant HCA should permit further evaluation of its role in human and rodent hematopoiesis.


Blood ◽  
1984 ◽  
Vol 63 (4) ◽  
pp. 784-788 ◽  
Author(s):  
VF LaRussa ◽  
F Sieber ◽  
LL Sensenbrenner ◽  
SJ Sharkis

Abstract In this article, we present evidence that sialic acid-containing surface components play a role in the regulation of erythropoiesis. A 1- hr exposure of mouse bone marrow cells to high concentrations of neuraminidase reduced erythroid colony formation. Coculture of 10(6) untreated thymocytes with neuraminidase-treated bone marrow cells restored erythroid colony growth. Neuraminidase-treated thymocytes retained their ability to suppress erythroid colony formation by untreated marrow cells, but lost their ability to enhance erythroid colony formation. Continuous exposure to low concentrations of neuraminidase enhanced erythroid bone marrow cell colony growth in response to a suboptimal dose of erythropoietin.


1977 ◽  
Vol 57 (5) ◽  
pp. 310-320 ◽  
Author(s):  
P.E. DiLeo ◽  
H. Müller ◽  
J.-P. Obrecht ◽  
B. Speck ◽  
E.M. Bühler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document