a Novel 3D Culture Model to Mimic Hematopoietic Niche for HSCs Differentiating to Megakaryocyte with Deproteined and Degreased Human Bone or β-TCP

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4360-4360
Author(s):  
Qianli Jiang ◽  
Dan Wang ◽  
Hao Huang ◽  
Peiran Zhao ◽  
Jing Sun ◽  
...  

Abstract Background: Hematopoietic stem cells (HSCs) are maintained in a particular microenvironment termed as "niche", which are constructed by a number of critical molecules, supporting matrix such as collagen and supporting cells like osteoblasts and bone mesenchymal stem cells (BMSCs), together with physical construct of trabecular bone and endosteum. However, the mechanism of niche is poorly understood since it is surrounded by hard and opaque cortex of bone. Here, we developed a three-dimensional (3D) culture model using the deproteined and degreased human bone or ¦Â-TCP biomaterial, to mimic hematopoietic niche which is highly similar to nature situation and is easy to be observed. Objective: To establish the 3D culture model to mimic the hematopoietic niche with the deproteined and degreased human bone or ¦Â-TCP, where both have an architecture of trabecular bone; the HSC/progeny and supporting cells were gene-marked with GFP and RFP respectively; the process by which the HSCs differentiated to megakaryocyte/platelets were observed within this 3D culture model. Method: 1) 3D culture system: The human bone was obtained by bone biopsy from volunteer donor after the signing of Informed Consent£¬then was deproteined with 30%H2O2 for 2h and degreased with a mixture buffer of Chloroform, methanol and deionized water£¨Vc:Vm:Vw=9:9:2£© in 37¡æ for 24h. ¦Â-tricalcium phosphate (¦Â-TCP) biomaterial was bought from Bio-lu company (France), which is a kind of artificial, mass producible biomimetic macroporous material and clinically proven tissue-engineered bone. Both materials were cut into small pieces with 2-3mm in height and parallel tested. 2) Cells: The C57BL/6 RFP-BMSCs and its complete culture medium were bought from Cyagen Biosciences Inc. (China). Sca-1+ cells were harvested from the bone marrow of GFP transgenic mice by FACS sorting (GFP-sca-1+ cells). RFP-BMSCs and GFP-sca-1+ cells were inoculated into the 3D culture system. 100ng/mL thrombopoietin and 100 ng/mL platelet-derived growth factor (PDGF) were added into co-culture medium for 5 days in 3cm confocal microscopy dishes, both cells were also directly (2D) cultured as control. 3) Observation and Semi-solid decalcification (SSD, 2010 ASH poster, no.2625): The 3D culture system and controls were observed directly by a confocal laser scanning microscope (Olympus), 430nm for GFP and 559nm for RFP. The 3D culture system were also decalcified with self-made SSD and observed to clarify the interaction of GFP and RFP cells. Result: When GFP-sca-1+ cells were co-cultured with RFP-BMSCs for 12h, GFP+ cells attached to grow with RFP-BMSCs, two colors mixed with different morphology (Fig.1a). In the following days, with the stimulating of PDGF and TPO, most GFP cells, surrounded by RFP-BMSCs, were bigger and bigger with more and more antennae and floss (Fig.1b). Hematogenesis happens nearby the architecture of trabecular bone. With the help of SSD, the hard and opaque construction disappeared gradually, only GFP and RFP cells stayed where they were with their original morphology and actions. By frozen section, we can easily distinguish the cell type, developmental stage and interactions between each cell. Discussion: The standard 2D cell culture systems neither reflect the normal architecture, nor material properties such as stiffness, nor the diffusion of soluble factors of the natural system. The deproteined and degreased human bone we used, not only reproduced the spongy architecture of the niche, but also provide a scaffold for cell growth. Furthermore, the self-made SSD can ¡°digest¡± the scaffold but preserve the cells; it is convenient to observe the cells within the ¡°black box¡± in 3D. However, the human bone was hard to obtain. Therefore, we investigated it with ¦Â-TCP, an artificial bone analogs, in parallel. Both materials works well for this novel 3D cell culture model. Conclusion: This novel 3D culture model is a straight-forward and easy-to-observe model in order to understand the bone marrow microenvironment. It is also suitable to study the cell proliferation, differentiation, mobilization and homing, etc. Disclosures No relevant conflicts of interest to declare.

2011 ◽  
Vol 236 (11) ◽  
pp. 1342-1350 ◽  
Author(s):  
Yukio Hirabayashi ◽  
Yoshihiro Hatta ◽  
Jin Takeuchi ◽  
Isao Tsuboi ◽  
Tomonori Harada ◽  
...  

Hematopoiesis occurs in the bone marrow, where primitive hematopoietic cells proliferate and differentiate in close association with a three-dimensional (3D) hematopoietic microenvironment composed of stromal cells. We examined the hematopoietic supportive ability of stromal cells in a 3D culture system using polymer particles with grafted epoxy polymer chains. Umbilical cord blood-derived CD34+ cells were co-cultivated with MS-5 stromal cells. They formed a 3D structure in the culture dish in the presence of particles, and the total numbers of cells and the numbers of hematopoietic progenitor cells, including colony-forming unit (CFU)-Mix, CFU-granulocyte-macrophage, CFU-megakaryocyte and burst-forming unit-erythroid, were measured every seven days. The hematopoietic supportive activity of the 3D culture containing polymer particles and stromal cells was superior to that of 2D culture, and allowed the expansion and maintenance of hematopoietic progenitor cells for more than 12 weeks. Various types of hematopoietic cells, including granulocytes, macrophages and megakaryocytes at different maturation stages, appeared in the 3D culture, suggesting that the CD34+ cells were able to differentiate into a range of blood cell types. Morphological examination showed that MS-5 stromal cells grew on the surface of the particles and bridged the gaps between them to form a 3D structure. Hematopoietic cells slipped into the 3D layer and proliferated within it, relying on the presence of the MS-5 cells. These results suggest that this 3D culture system using polymer particles reproduced the hematopoietic phenomenon in vitro, and might thus provide a new tool for investigating hematopoietic stem cell–stromal cell interactions.


2018 ◽  
Vol 120 ◽  
pp. S152
Author(s):  
Semra Unal ◽  
Tilbe Gokce ◽  
Sema Arslan ◽  
Ayse Mine Yilmaz ◽  
Oguzhan Gunduz ◽  
...  

2012 ◽  
Vol 05 (10) ◽  
pp. 580-586 ◽  
Author(s):  
Saeed Azandeh ◽  
Mahmoud Orazizadeh ◽  
Mahmoud Hashemitabar ◽  
Ali Khodadadi ◽  
Ali Akbar Shayesteh ◽  
...  

2018 ◽  
Vol 13 (6) ◽  
pp. 673-687 ◽  
Author(s):  
Hiromi Yagi Mendoza ◽  
Tomomi Yokoyama ◽  
Tomoko Tanaka ◽  
Hisataka Ii ◽  
Ken Yaegaki

Reproduction ◽  
2011 ◽  
Vol 141 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Candace M Tingen ◽  
Sarah E Kiesewetter ◽  
Jennifer Jozefik ◽  
Cristina Thomas ◽  
David Tagler ◽  
...  

Innovations in in vitro ovarian follicle culture have revolutionized the field of fertility preservation, but the successful culturing of isolated primary and small secondary follicles remains difficult. Herein, we describe a revised 3D culture system that uses a feeder layer of ovarian stromal cells to support early follicle development. This culture system allows significantly improved primary and early secondary follicle growth and survival. The stromal cells, consisting mostly of thecal cells and ovarian macrophages, recapitulate the in vivo conditions of these small follicles and increase the production of androgens and cytokines missing from stromal cell-free culture conditions. These results demonstrate that small follicles have a stage-specific reliance on the ovarian environment, and that growth and survival can be improved in vitro through a milieu created by pre-pubertal ovarian stromal cell co-culture.


Biologicals ◽  
2017 ◽  
Vol 48 ◽  
pp. 114-120 ◽  
Author(s):  
Vahid Mansouri ◽  
Mohammad Salehi ◽  
Mir davood Omrani ◽  
Zahra Niknam ◽  
Abdolreza Ardeshirylajimi

Sign in / Sign up

Export Citation Format

Share Document